MolOpt: A Web Server for Drug Design using Bioisosteric Transformation

Author(s): Jinwen Shan, Changge Ji*

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Bioisosteric replacement is widely used in drug design for lead optimization. However, the identification of a suitable bioisosteric group is not an easy task.

Methods: In this work, we present MolOpt, a web server for in silico drug design using bioisosteric transformation. Potential bioisosteric transformation rules were derived from data mining, deep generative machine learning and similarity comparison. MolOpt tries to assist the medicinal chemist in his/her search for what to make next.

Results and Discussion: By replacing molecular substructures with similar chemical groups, MolOpt automatically generates lists of analogues. MolOpt also evaluates forty important pharmacokinetic and toxic properties for each newly designed molecule. The transformed analogues can be assessed for possible future study.

Conclusion: MolOpt is useful for the identification of suitable lead optimization ideas. The MolOpt Server is freely available for use on the web at http://xundrug.cn/molopt.

Keywords: Bioisosteric replacement, lead optimization, in silico drug design, data mining, machine learning, web server.

[1]
Langdon, S.R.; Ertl, P.; Brown, N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol. Inform., 2010, 29(5), 366-385.
[http://dx.doi.org/10.1002/minf.201000019] [PMID: 27463193]
[2]
Seddon, M.P.; Cosgrove, D.A.; Gillet, V.J. Bioisosteric replacements extracted from high-quality structures in the protein databank. ChemMedChem, 2018, 13(6), 607-613.
[http://dx.doi.org/10.1002/cmdc.201700679] [PMID: 29314719]
[3]
Lange, J.H.M.; van Stuivenberg, H.H.; Coolen, H.K.A.C.; Adolfs, T.J.P.; McCreary, A.C.; Keizer, H.G.; Wals, H.C.; Veerman, W.; Borst, A.J.M.; de Looff, W.; Verveer, P.C.; Kruse, C.G. Bioisosteric replacements of the pyrazole moiety of rimonabant: synthesis, biological properties, and molecular modeling investigations of thiazoles, triazoles, and imidazoles as potent and selective CB1 cannabinoid receptor antagonists. J. Med. Chem., 2005, 48(6), 1823-1838.
[http://dx.doi.org/10.1021/jm040843r] [PMID: 15771428]
[4]
Bhandare, R.R.; Canney, D.J. Bioisosteric replacement and related analogs in the design, synthesis and evaluation of ligands for muscarinic acetylcholine receptors. Med. Chem., 2014, 10(4), 361-375.
[http://dx.doi.org/10.2174/15734064113096660043] [PMID: 24021160]
[5]
Rombouts, F.J.R.; Tovar, F.; Austin, N.; Tresadern, G.; Trabanco, A.A. Benzazaborinines as novel bioisosteric replacements of naphthalene: propranolol as an example. J. Med. Chem., 2015, 58(23), 9287-9295.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01088] [PMID: 26565745]
[6]
Goldberg, K.; Groombridge, S.; Hudson, J.; Leach, A.G.; MacFaul, P.A.; Pickup, A.; Poultney, R.; Scott, J.S.; Svensson, P.H.; Sweeney, J. Oxadiazole isomers: all bioisosteres are not created equal. MedChemComm, 2012, 3(5), 600-604.
[http://dx.doi.org/10.1039/c2md20054f]
[7]
Elliott, T.S.; Slowey, A.; Ye, Y.; Conway, S.J. The use of phosphate bioisosteres in medicinal chemistry and chemical biology. MedChemComm, 2012, 3(7), 735-751.
[http://dx.doi.org/10.1039/c2md20079a]
[8]
Marson, C.M. New and unusual scaffolds in medicinal chemistry. Chem. Soc. Rev., 2011, 40(11), 5514-5533.
[http://dx.doi.org/10.1039/c1cs15119c] [PMID: 21837344]
[9]
Mykhailiuk, P.K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem., 2019, 17(11), 2839-2849.
[http://dx.doi.org/10.1039/C8OB02812E] [PMID: 30672560]
[10]
Kenny, P.W.; Montanari, C.A.; Prokopczyk, I.M.; Sala, F.A.; Sartori, G.R. Automated molecule editing in molecular design. J. Comput. Aided Mol. Des., 2013, 27(8), 655-664.
[http://dx.doi.org/10.1007/s10822-013-9676-0] [PMID: 24002455]
[11]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[12]
Patani, G.A.; LaVoie, E.J. Bioisosterism: a rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[13]
Diana, G.D.; Volkots, D.L.; Nitz, T.J.; Bailey, T.R.; Long, M.A.; Vescio, N.; Aldous, S.; Pevear, D.C.; Dutko, F.J. Oxadiazoles as ester bioisosteric replacements in compounds related to disoxaril. Antirhinovirus activity. J. Med. Chem., 1994, 37(15), 2421-2436.
[http://dx.doi.org/10.1021/jm00041a022] [PMID: 8057290]
[14]
Wagener, M.; Lommerse, J.P.M. The quest for bioisosteric replacements. J. Chem. Inf. Model., 2006, 46(2), 677-685.
[http://dx.doi.org/10.1021/ci0503964] [PMID: 16562998]
[15]
Desaphy, J.; Rognan, D. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements. J. Chem. Inf. Model., 2014, 54(7), 1908-1918.
[http://dx.doi.org/10.1021/ci500282c] [PMID: 24991975]
[16]
Weber, J.; Achenbach, J.; Moser, D.; Proschak, E. VAMMPIRE: a matched molecular pairs database for structure-based drug design and optimization. J. Med. Chem., 2013, 56(12), 5203-5207.
[http://dx.doi.org/10.1021/jm400223y] [PMID: 23734609]
[17]
Krier, M.; Hutter, M.C. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs. J. Chem. Inf. Model., 2009, 49(5), 1280-1297.
[http://dx.doi.org/10.1021/ci8003418] [PMID: 19402687]
[18]
Dick, B.L.; Cohen, S.M. Metal-binding isosteres as new scaffolds for metalloenzyme inhibitors. Inorg. Chem., 2018, 57(15), 9538-9543.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01632] [PMID: 30009599]
[19]
Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
[20]
Zhang, Y.; Borrel, A.; Ghemtio, L.; Regad, L.; Boije Af Gennäs, G.; Camproux, A-C.; Yli-Kauhaluoma, J.; Xhaard, H. Structural isosteres of phosphate groups in the protein data bank. J. Chem. Inf. Model., 2017, 57(3), 499-516.
[http://dx.doi.org/10.1021/acs.jcim.6b00519] [PMID: 28234462]
[21]
Zafrani, Y.; Yeffet, D.; Sod-Moriah, G.; Berliner, A.; Amir, D.; Marciano, D.; Gershonov, E.; Saphier, S. Difluoromethyl bioisostere: examining the “lipophilic hydrogen bond donor”. Concept. J. Med. Chem., 2017, 60(2), 797-804.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01691] [PMID: 28051859]
[22]
Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; Huryn, D.M.; Ballatore, C. Structure property relationships of carboxylic acid isosteres. J. Med. Chem., 2016, 59(7), 3183-3203.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01963] [PMID: 26967507]
[23]
Griffen, E.; Leach, A.G.; Robb, G.R.; Warner, D.J. Matched molecular pairs as a medicinal chemistry tool. J. Med. Chem., 2011, 54(22), 7739-7750.
[http://dx.doi.org/10.1021/jm200452d] [PMID: 21936582]
[24]
Poulie, C.B.M.; Bunch, L. Heterocycles as nonclassical bioisosteres of α-amino acids. ChemMedChem, 2013, 8(2), 205-215.
[http://dx.doi.org/10.1002/cmdc.201200436] [PMID: 23322633]
[25]
Dudkin, V.Y. Bioisosteric equivalence of five-membered heterocycles. Chem. Heterocycl. Compd. (N. Y., NY, U. S.), 2012, 48(1), 27-32.
[http://dx.doi.org/10.1007/s10593-012-0964-8]
[26]
Stewart, K.D.; Shiroda, M.; James, C.A. Drug Guru: a computer software program for drug design using medicinal chemistry rules. Bioorg. Med. Chem., 2006, 14(20), 7011-7022.
[http://dx.doi.org/10.1016/j.bmc.2006.06.024] [PMID: 16870456]
[27]
Wirth, M.; Zoete, V.; Michielin, O.; Sauer, W.H.B. SwissBioisostere: a database of molecular replacements for ligand design. Nucleic Acids Res., 2013, 41(Database issue), D1137-D1143.
[http://dx.doi.org/10.1093/nar/gks1059] [PMID: 23161688]
[28]
Ertl, P.; Lewis, R. IADE: a system for intelligent automatic design of bioisosteric analogs. J. Comput. Aided Mol. Des., 2012, 26(11), 1207-1215.
[http://dx.doi.org/10.1007/s10822-012-9609-3] [PMID: 23053736]
[29]
Tyrchan, C.; Evertsson, E. Matched molecular pair analysis in short: algorithms, applications and limitations. Comput. Struct. Biotechnol. J., 2016, 15, 86-90.
[http://dx.doi.org/10.1016/j.csbj.2016.12.003] [PMID: 28066532]
[30]
Leach, A.G.; Jones, H.D.; Cosgrove, D.A.; Kenny, P.W.; Ruston, L.; MacFaul, P.; Wood, J.M.; Colclough, N.; Law, B. Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J. Med. Chem., 2006, 49(23), 6672-6682.
[http://dx.doi.org/10.1021/jm0605233] [PMID: 17154498]
[31]
Turk, S.; Merget, B.; Rippmann, F.; Fulle, S. Coupling matched molecular pairs with machine learning for virtual compound optimization. J. Chem. Inf. Model., 2017, 57(12), 3079-3085.
[http://dx.doi.org/10.1021/acs.jcim.7b00298] [PMID: 29131617]
[32]
Kramer, C.; Fuchs, J.E.; Whitebread, S.; Gedeck, P.; Liedl, K.R. Matched molecular pair analysis: significance and the impact of experimental uncertainty. J. Med. Chem., 2014, 57(9), 3786-3802.
[http://dx.doi.org/10.1021/jm500317a] [PMID: 24738976]
[33]
Dossetter, A.G.; Griffen, E.J.; Leach, A.G. Matched molecular pair analysis in drug discovery. Drug Discov. Today, 2013, 18(15-16), 724-731.
[http://dx.doi.org/10.1016/j.drudis.2013.03.003] [PMID: 23557664]
[34]
de la Vega de León, A.; Bajorath, J. Matched molecular pairs derived by retrosynthetic fragmentation. MedChemComm, 2014, 5(1), 64-67.
[http://dx.doi.org/10.1039/C3MD00259D]
[35]
Ji, C.; Svensson, F.; Zoufir, A.; Bender, A. eMolTox: prediction of molecular toxicity with confidence. Bioinformatics, 2018, 34(14), 2508-2509.
[http://dx.doi.org/10.1093/bioinformatics/bty135] [PMID: 29522123]
[36]
Cheng, F.; Li, W.; Liu, G.; Tang, Y. In silico ADMET prediction: recent advances, current challenges and future trends. Curr. Top. Med. Chem., 2013, 13(11), 1273-1289.
[http://dx.doi.org/10.2174/15680266113139990033] [PMID: 23675935]
[37]
Yan, Y.; Wang, W.; Sun, Z.; Zhang, J.Z.H.; Ji, C. Protein-ligand empirical interaction components for virtual screening. J. Chem. Inf. Model., 2017, 57(8), 1793-1806.
[http://dx.doi.org/10.1021/acs.jcim.7b00017] [PMID: 28678484]
[38]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[39]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 2018, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[40]
Dearden, J.C. In silico prediction of ADMET properties: how far have we come? Expert Opin. Drug Metab. Toxicol., 2007, 3(5), 635-639.
[http://dx.doi.org/10.1517/17425255.3.5.635] [PMID: 17916052]
[41]
Yang, H.; Sun, L.; Li, W.; Liu, G.; Tang, Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem., 2018, 6(30)
[42]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. Deeptox: toxicity prediction using deep learning. Front. Environ. Sci., 2016, 3(80)
[43]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[44]
Hussain, J.; Rea, C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J. Chem. Inf. Model., 2010, 50(3), 339-348.
[http://dx.doi.org/10.1021/ci900450m] [PMID: 20121045]
[45]
Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[46]
Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform., 2017, 9(1), 48.
[http://dx.doi.org/10.1186/s13321-017-0235-x] [PMID: 29086083]
[47]
Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131.
[http://dx.doi.org/10.1021/acscentsci.7b00512] [PMID: 29392184]
[48]
Landrum, G. Landrum, G., RDKit: Open-source cheminformatics, 2006.
[49]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikitlearn: Machine Learning in Python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[50]
ChemAxon, JChem (Version 16.10.10), ChemAxon 2016.http://www.chemaxon.com
[51]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform., 2009, 1(1), 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [460 - 466]
Pages: 7
DOI: 10.2174/1573409915666190704093400
Price: $65

Article Metrics

PDF: 43
HTML: 1