Lead Molecules as Novel Aromatase Inhibitors: In Silico De Novo Designing and Binding Affinity Studies

Author(s): Laxmi Banjare, Sant Kumar Verma, Akhlesh Kumar Jain, Suresh Thareja*.

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Aromatase inhibitors emerged as a pivotal moiety to selectively block estrogen production, prevention and treatment of tumour growth in breast cancer. De novo drug design is an alternative approach to blind virtual screening for successful designing of the novel molecule against various therapeutic targets.

Objective: In the present study, we have explored the de novo approach to design novel aromatase inhibitors.

Methods: The e-LEA3D, a computational-aided drug design web server was used to design novel drug-like candidates against the target aromatase. For drug-likeness ADME parameters (molecular weight, H-bond acceptors, H-bond donors, LogP and number of rotatable bonds) of designed molecules were calculated in TSAR software package, geometry optimization and energy minimization was accomplished using Chem Office. Further, molecular docking study was performed in Molegro Virtual Docker (MVD).

Results: Among 17 generated molecules using the de novo pathway, 13 molecules passed the Lipinski filter pertaining to their bioavailability characteristics. De novo designed molecules with drug-likeness were further docked into the mapped active site of aromatase to scale up their affinity and binding fitness with the target. Among de novo fabricated drug like candidates (1-13), two molecules (5, 6) exhibited higher affinity with aromatase in terms of MolDock score (-150.650, -172.680 Kcal/mol, respectively) while molecule 8 showed lowest target affinity (-85.588 Kcal/mol).

Conclusion: The binding patterns of lead molecules (5, 6) could be used as a pharmacophore for medicinal chemists to explore these molecules for their aromatase inhibitory potential.

Keywords: Aromatase inhibitors, breast cancer, de novo drug design, drug likeness, e-LEA3D, molecular docking.

[1]
American Cancer Society Atlanta facts & figures,. https://www.cancer.org/content/dam/cancerorg/research/cancer-facts-andstatistics/breast-cancer (accessed January 30, 2018).
[2]
Theobald, A.J. Management of advanced breast cancer with endocrine therapy: the role of the primary healthcare team. Int. J. Clin. Pract., 2000, 54(10), 665-669.
[PMID: 11221280]
[3]
Miller, W.L.; Auchus, R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev., 2011, 32(1), 81-151.
[http://dx.doi.org/10.1210/er.2010-0013] [PMID: 21051590]
[4]
Thompson, E.A., Jr; Siiteri, P.K. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. Biol. Chem., 1974, 249(17), 5364-5372.
[PMID: 4153532]
[5]
Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Hinshelwood, M.M.; Graham-Lorence, S.; Amarneh, B.; Ito, Y.; Fisher, C.R.; Michael, M.D.; Meldenson, C.R.; Bulun, S.E. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev., 1994, 15(3), 342-355.
[PMID: 8076586]
[6]
Johnston, J.O. Aromatase inhibitors. Crit. Rev. Biochem. Mol. Biol., 1998, 33(5), 375-405.
[PMID: 9827706]
[7]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[http://dx.doi.org/10.1038/nature07614] [PMID: 19129847]
[8]
Ghosh, D.; Jiang, W.; Lo, J.; Egbuta, C. Higher order organization of human placental aromatase. Steroids, 2011, 76(8), 753-758.
[http://dx.doi.org/10.1016/j.steroids.2011.02.030] [PMID: 21392520]
[9]
Shimozawa, O.; Sakaguchi, M.; Ogawa, H.; Harada, N.; Mihara, K.; Omura, T. Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen. J. Biol. Chem., 1993, 268(28), 21399-21402.
[PMID: 8407981]
[10]
Amarneh, B.; Corbin, C.J.; Peterson, J.A.; Simpson, E.R.; Graham-Lorence, S. Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis. Mol. Endocrinol., 1993, 7(12), 1617-1624.
[PMID: 8145767]
[11]
Ozcan-Sezer, S.; Ince, E.; Akdemir, A.; Ceylan, O.O.; Suzen, S.; Gurer-Orhan, H. Aromatase Inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica, 2018, XX, XX-XX. [Article ahead of print
[http://dx.doi.org/10.1080/00498254.2018.1482029] [PMID: 29804490]
[12]
Yoshimoto, F.K.; Guengerich, F.P. Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P450 19A1 steroid aromatase. J. Am. Chem. Soc., 2014, 136(42), 15016-15025.
[http://dx.doi.org/pubs.acs.org/doi/10.1021/ja508185d] [PMID: 25252141]
[13]
Osawa, Y.; Shibata, K.; Rohrer, D.; Weeks, C.; Duax, W.L. Letter: Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J. Am. Chem. Soc., 1975, 97(15), 4400-4402.
[http://dx.doi.org/10.1021/ja00848a046] [PMID: 1141602]
[14]
Narashimamurthy, J.; Rao, A.R.; Sastry, G.N. Aromatase inhibitors: a new paradigm in breast cancer treatment. Curr. Med. Chem. Anticancer Agents, 2004, 4(6), 523-534.
[http://dx.doi.org/10.2174/1568011043352669] [PMID: 15579017]
[15]
Kalalinia, F.; Jouya, M.; Komachali, A.K.; Aboutourabzadeh, S.M.; Karimi, G.; Behravan, J.; Abnous, K.; Etemad, L.; Kamali, H.; Hadizadeh, F. Design, synthesis, and biological evaluation of new azole derivatives as potent aromatase inhibitors with potential effects against breast cancer. Anticancer. Agents Med. Chem., 2018, 18(7), 1016-1024. [Article ahead of print
[http://dx.doi.org/10.2174/1871520618666180116105858] [PMID: 29336269]
[16]
Dutta, U.; Pant, K. Aromatase inhibitors: past, present and future in breast cancer therapy. Med. Oncol., 2008, 25(2), 113-124.
[http://dx.doi.org/10.1007/s12032-007-9019-x] [PMID: 17973095]
[17]
Chen, S. An “omics” approach to determine the mechanisms of acquired aromatase inhibitor resistance. OMICS, 2011, 15(6), 347-352.
[http://dx.doi.org/10.1089/omi.2010.0097] [PMID: 21332390]
[18]
Pistelli, M.; Mora, A.D.; Ballatore, Z.; Berardi, R. Aromatase inhibitors in premenopausal women with breast cancer: the state of the art and future prospects. Curr. Oncol., 2018, 25(2), e168-e175.
[http://dx.doi.org/10.3747/co.25.3735] [PMID: 29719441]
[19]
Masri, S.; Phung, S.; Wang, X.; Wu, X.; Yuan, Y.C.; Wagman, L.; Chen, S. Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res., 2008, 68(12), 4910-4918.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0303] [PMID: 18559539]
[20]
Masri, S.; Phung, S.; Wang, X.; Chen, S. Molecular characterization of aromatase inhibitor-resistant, tamoxifen-resistant and LTEDaro cell lines. J. Steroid Biochem. Mol. Biol., 2010, 118(4-5), 277-282.
[http://dx.doi.org/10.1016/j.jsbmb.2009.10.011] [PMID: 19897035]
[21]
Chumsri, S.; Howes, T.; Bao, T.; Sabnis, G.; Brodie, A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[22]
Fabian, C.J. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int. J. Clin. Pract., 2007, 61(12), 2051-2063.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01587.x] [PMID: 17892469]
[23]
Zilli, M.; Grassadonia, A.; Tinari, N.; Di Giacobbe, A.; Gildetti, S.; Giampietro, J.; Natoli, C.; Iacobelli, S. Consorzio Interuniversitario Nazionale per la Bio-Oncologia (CINBO). Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim. Biophys. Acta, 2009, 1795(1), 62-81.
[PMID: 18804516]
[24]
Giuliano, M.; Schifp, R.; Osborne, C.K.; Trivedi, M.V. Biological mechanisms and clinical implications of endocrine resistance in breast cancer. Breast, 2011, 20(Suppl. 3), S42-S49.
[http://dx.doi.org/10.1016/S0960-9776(11)70293-4] [PMID: 22015292]
[25]
Nishibata, Y.; Itai, A. Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron, 1991, 47, 8885-8990.
[http://dx.doi.org/10.1016/S0040-4020(01)86503-0]
[26]
Böhm, H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des., 1992, 6(1), 61-78.
[http://dx.doi.org/10.1007/BF00124387] [PMID: 1583540]
[27]
Gillet, V.; Johnson, A.P.; Mata, P.; Sike, S.; Williams, P. SPROUT: a program for structure generation. J. Comput. Aided Mol. Des., 1993, 7(2), 127-153.
[http://dx.doi.org/10.1007/BF00126441] [PMID: 8320553]
[28]
Douguet, D.; Munier-Lehmann, H.; Labesse, G.; Pochet, S. LEA3D: a computer-aided ligand design for structure-based drug design. J. Med. Chem., 2005, 48(7), 2457-2468.
[http://dx.doi.org/10.1021/jm0492296] [PMID: 15801836]
[29]
Wang, R.; Gao, Y.; Lai, L. A multi-purpose program for structure-based drug design. J. Mol. Model., 2000, 6, 498-516.
[http://dx.doi.org/10.1007/s0089400060498]
[30]
Yuan, Y.; Pei, J.; Lai, L. LigBuilder 2: a practical de novo drug design approach. J. Chem. Inf. Model., 2011, 51(5), 1083-1091.
[http://dx.doi.org/10.1021/ci100350u] [PMID: 21513346]
[31]
Vinkers, H.M.; de Jonge, M.R.; Daeyaert, F.F.; Heeres, J.; Koymans, L.M.; van Lenthe, J.H.; Lewi, P.J.; Timmerman, H.; Van Aken, K.; Janssen, P.A. SYNOPSIS: synthesize and optimize system in silico. J. Med. Chem., 2003, 46(13), 2765-2773.
[http://dx.doi.org/10.1021/jm030809x] [PMID: 12801239]
[32]
Schneider, G.; Lee, M.L.; Stahl, M.; Schneider, P. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J. Comput. Aided Mol. Des., 2000, 14(5), 487-494.
[http://dx.doi.org/10.1023/A:1008184403558] [PMID: 10896320]
[33]
Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A graph-based genetic algorithm and its application to the multiobjective evolution of median molecules. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1079-1087.
[http://dx.doi.org/10.1021/ci034290p] [PMID: 15154776]
[34]
Fechner, U.; Schneider, G. Flux (1): a virtual synthesis scheme for fragment-based de novo design. J. Chem. Inf. Model., 2006, 46(2), 699-707.
[http://dx.doi.org/10.1021/ci0503560] [PMID: 16563000]
[35]
Douguet, D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res, 2010, 38(web Server issue), W615-621.
[36]
Lameijer, E.W.; Kok, J.N.; Bäck, T.; Ijzerman, A.P. The molecule evoluator. An interactive evolutionary algorithm for the design of drug-like molecules. J. Chem. Inf. Model., 2006, 46(2), 545-552.
[http://dx.doi.org/10.1021/ci050369d] [PMID: 16562982]
[37]
Huang, Q.; Li, L.L.; Yang, S.Y. PhDD: a new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. J. Mol. Graph. Model., 2010, 28(8), 775-787.
[http://dx.doi.org/10.1016/j.jmgm.2010.02.002] [PMID: 20206562]
[38]
Damewood, J.R., Jr; Lerman, C.L.; Masek, B.B. NovoFLAP: A ligand-based de novo design approach for the generation of medicinally relevant ideas. J. Chem. Inf. Model., 2010, 50(7), 1296-1303.
[http://dx.doi.org/10.1021/ci100080r] [PMID: 20586434]
[39]
Kawai, K.; Yoshimaru, K.; Takahashi, Y. Generation of targetselective drug candidate structures using molecular evolutionary algorithm with SVM classifiers. J. Comput. Chem. Jpn., 2011, 10, 79-87.
[http://dx.doi.org/10.2477/jccj.H2309]
[40]
Kutchukian, P.S.; Shakhnovich, E.I. De novo design: balancing novelty and confined chemical space. Expert Opin. Drug Discov., 2010, 5(8), 789-812.
[http://dx.doi.org/10.1517/17460441.2010.497534]
[41]
Eisen, M.B.; Wiley, D.C.; Karplus, M.; Hubbard, R.E. HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins, 1994, 19(3), 199-221.
[http://dx.doi.org/10.1002/prot.340190305] [PMID: 7937734]
[42]
Bohacek, R.S.; McMartin, C. Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive application of de novo design method incorporating combinatorial growth. J. Am. Chem. Soc., 1994, 116, 5560-5571.
[http://dx.doi.org/10.1021/ja00092a006]
[43]
Verma, S.K.; Thareja, S. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors. PLoS One, 2017, 12(4)e0175318
[http://dx.doi.org/10.1371/journal.pone.0175318] [PMID: 28399135]
[44]
Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Advances, 2016, 6, 108928-108940.
[http://dx.doi.org/10.1039/C6RA24501C]
[45]
Verma, S.K.; Thareja, S. Formylchromone derivatives as novel and selective PTP-1B inhibitors: a drug design aspect using molecular docking-based self-organizing molecular field analysis. Med. Chem. Res., 2016, 25, 1433-1467.
[http://dx.doi.org/10.1007/s00044-016-1584-0]
[46]
Bian, Y.; Xie, X.Q. Computational fragment-based drug design: current trends, strategies, and applications. AAPS J., 2018, 20(3):59, 1-22,
[http://dx.doi.org/10.1208/s12248-018-0216-7]
[47]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[48]
Roche, O.; Schneider, P.; Zuegge, J.; Guba, W.; Kansy, M.; Alanine, A.; Bleicher, K.; Danel, F.; Gutknecht, E.M.; Rogers-Evans, M.; Neidhart, W.; Stalder, H.; Dillon, M.; Sjögren, E.; Fotouhi, N.; Gillespie, P.; Goodnow, R.; Harris, W.; Jones, P.; Taniguchi, M.; Tsujii, S.; von der Saal, W.; Zimmermann, G.; Schneider, G. Development of a virtual screening method for identification of “frequent hitters” in compound libraries. J. Med. Chem., 2002, 45(1), 137-142.
[http://dx.doi.org/10.1021/jm010934d] [PMID: 11754585]
[49]
Viswanadhan, V.N.; Ghose, A.K.; Revankar, G.R.; Robins, R.K. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. J. Chem. Inf. Comput. Sci., 1989, 29, 163-172.
[http://dx.doi.org/10.1021/ci00063a006]
[50]
Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13, 295-300.
[http://dx.doi.org/10.2174/1570180812666150819002954]
[51]
Verma, S.K.; Sharma, S.K.; Thareja, S. Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPP-IV) inhibitors. Lett. Drug Des. Discov., 2015, 12, 284-291.
[http://dx.doi.org/10.2174/1570180811666141016000752]
[52]
Verma, S.K.; Thareja, S. Molecular docking assisted 3D-QSAR study of benzylidene-2, 4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Advances, 2016, 6, 33857-33867.
[http://dx.doi.org/10.1039/C6RA03067J]
[53]
Ghorab, M.M.; Alsaid, M.S. Anti-breast cancer activity of some novel quinoline derivatives. Acta Pharm., 2015, 65(3), 271-283.
[http://dx.doi.org/10.1515/acph-2015-0030] [PMID: 26431105]
[54]
Ty, N.; Dupeyre, G.; Chabot, G.G.; Seguin, J.; Quentin, L.; Chiaroni, A.; Tillequin, F.; Scherman, D.; Michel, S.; Cachet, X. Structure-activity relationships of indole compounds derived from combretastatin A4: synthesis and biological screening of 5-phenylpyrrolo[3,4-a]carbazole-1,3-diones as potential antivascular agents. Eur. J. Med. Chem., 2010, 45(9), 3726-3739.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.022] [PMID: 20538383]
[55]
Aiello, S.; Wells, G.; Stone, E.L.; Kadri, H.; Bazzi, R.; Bell, D.R.; Stevens, M.F.; Matthews, C.S.; Bradshaw, T.D.; Westwell, A.D. Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J. Med. Chem., 2008, 51(16), 5135-5139.
[http://dx.doi.org/10.1021/jm800418z] [PMID: 18666770]
[56]
Abdellatif, K.R.A.; Lamie, P.F.; Omar, H.A. 3-methyl-2-phenyl-1-substituted-indole derivatives as indomethacin analogs: design, synthesis and biological evaluation as potential anti-inflammatory and analgesic agents. J. Enzyme Inhib. Med. Chem., 2016, 31(2), 318-324.
[http://dx.doi.org/10.3109/14756366.2015.1022174] [PMID: 25798690]
[57]
Woo, L.W.L.; Jackson, T.; Putey, A.; Cozier, G.; Leonard, P.; Acharya, K.R.; Chander, S.K.; Purohit, A.; Reed, M.J.; Potter, B.V. Highly potent first examples of dual aromatase-steroid sulfatase inhibitors based on a biphenyl template. J. Med. Chem., 2010, 53(5), 2155-2170.
[http://dx.doi.org/10.1021/jm901705h] [PMID: 20148564]
[58]
Katarkar, A.; Haldar, P.K.; Chaudhuri, K. De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors. Biochem. Biophys. Res. Commun., 2015, 456(3), 707-713.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.051] [PMID: 25522881]
[59]
Desai, V.H.; Kumar, S.P.; Pandya, H.A.; Solanki, H.A. Receptor-guided de novo design of dengue envelope protein inhibitors. Appl. Biochem. Biotechnol., 2015, 177(4), 861-878.
[http://dx.doi.org/10.1007/s12010-015-1784-y] [PMID: 26299376]
[60]
Rout, S.; Mahapatra, R.K. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate. Biomed. Pharmacother., 2016, 82, 192-201.
[http://dx.doi.org/10.1016/j.biopha.2016.04.057] [PMID: 27470355]
[61]
Lakhlili, W.; Yasri, A.; Ibrahimi, A. Structure-activity relationships study of mTOR kinase inhibition using QSAR and structure-based drug design approaches. OncoTargets Ther., 2016, 9, 7345-7353.
[http://dx.doi.org/10.2147/OTT.S108526] [PMID: 27980424]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2020
Page: [655 - 665]
Pages: 11
DOI: 10.2174/1570180816666190703152659
Price: $65

Article Metrics

PDF: 15