An Overview of Acrylonitrile Production Methods: Comparison of Carbon Fiber Precursors and Marketing

Author(s): Ehsan Firouzi, Hassan Hajifatheali*, Ebrahim Ahmadi, Mohammadreza Marefat

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Acrylonitrile is a key precursor in the production of a wide range of products in the chemical industries. The major products of acrylonitrile include acrylonitrile butadiene styrene resin, acrylic fibers, and adiponitrile. The demand for the roduction of acrylonitrile is affected by the global economy but because of the development of living standards; the demand for producing acrylonitrile and its derivations are significantly increasing. So in 2016, China alone produced 32% of the world’s acrylonitrile, and its production is expected to have a 55% increase in 2021. Acrylonitrile and its derivations have wide applications in different industries like car manufacturing, electronics, aerospace, and textile. Considering the importance of the acrylonitrile precursor in the current world, in this study, we discuss and investigate its production processes, the obtained copolymers, and polyacrylonitrile production and its application in the carbon fibers and compare it with other carbon fiber precursors such as mesophase pitch and cellulose. We also focus on its marketing in the world.

Keywords: Acrylonitrile butadiene styrene resin, acrylonitrile production methods, carbon fiber precursor, cellulose, copolymers, mesophase pitch.

[1]
Gupta, B.S.; Afshari, M. Polyacrylonitrile fibers. In: Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, 2018; pp. 545-593.
[http://dx.doi.org/10.1016/B978-0-08-101272-7.00015-8]
[2]
Daniel, D.; Fabrizio, C. Handbook of Advanced Methods and Processes in Oxidation Catalysis: From Laboratory to Industry; World Scientific: Singapore, 2014, pp. 796-1017.
[3]
Spitz, P.H. Petrochemicals: The Rise of an Industry; Wiley: New York, 1988, 27, p. 588.
[4]
Snell, F.D.; Hilton, C.L.; Ettre, L.S. Encyclopedia of Industrial Chemical Analysis; Interscience Publishers: New York, 1971, Vol. 11, .
[5]
Barber, W.A.; Fetchin, J.A. Copper catalyst for hydration of nitriles to amides, U.S. Patent 4048226A. 1977.
[6]
Brazdil, J.F. Strategies for the selective catalytic oxidation of alkanes. Top. Catal., 2006, 38(4), 289-294.
[http://dx.doi.org/10.1007/s11244-006-0027-4]
[7]
Matsuda, K.; Barber, W.A. Reduced copper catalyst on support., European Patent 1069946A1. 1978.
[8]
Tefertiller, B.A.; Habermann, C.E. Heterogeneous catalyst for the liquid phase hydrolysis of nitriles to amides, U.S. Patent 4036879A. 1971.
[9]
Bruson, H.A.; Riener, T.W. The chemistry of acrylonitrile. IV. Cyanoethylation of active hydrogen groups. J. Am. Chem. Soc., 1943, 65(1), 23-27.
[http://dx.doi.org/10.1021/ja01241a007]
[10]
Dalin, M.A.; Kolchin, I.K.; Serebr︠i︡akov, B.R. Acrylonitrile; Technomic Publication: London, 1971, Vol. 6, .
[11]
Heller, S.R.; Milne, G.W. EPA/NIH Mass Spectral Database, Volume 2. Molecular Weights 186-273, (No. NSRDS-NBS-63-VOL-2). National Standard Reference Data System,. 1978.
[12]
Badham, J.W. Adiponitrile apparatus., U.S. Patent 3728480A. 1971.
[13]
Baizer, M.M.; Campbell, C.R.; Fariss, R.H.; Robert, J. Adiponitrile process, U.S. Patent 3529011A. 1965.
[14]
Danly, D. Development and commercialization of the Monsanto electrochemical adiponitrile process. J. Electrochem. Soc., 1984, 131(10), 435C-442C.
[http://dx.doi.org/10.1149/1.2115324]
[15]
Wu, M.M. Acrylonitrile and acrylonitrile polymers. In: Encyclopedia of Polymer Science and Technology; Wiley: Weinheim, 2002.
[16]
Acrylonitrile, Chemical Economics Handbook; IHS Market: London, 2019.
[17]
Acrylonitrile (ACN): 2019 World Market Outlook and Forecast up to 2028; Merchant Research and Consulting Ltd, 2019, p. 154.
[18]
Bartoň, J.; Capek, I.; Hrdlovič, P.; Photoinitiation, I.I. Kinetics of the acrylonitrile polymerization photoinitiated by aromatic hydrocarbons. J. Polym. Sci. Pol. Chem., 1975, 13(2), 2671-2690.
[19]
Simitzis, J. Polyacrylonitrile. In: Handbook of Thermoplastics; Olabisi, O.; Adewale, K., Eds.; CRC Press: Boca Raton, 1997; pp. 177-201.
[20]
Melacini, P.; Patron, L.; Moretti, A.; Tedesco, R. Process for the bulk polymerization of acrylonitrile, U.S. Patent 3821178A. 1974.
[21]
Patron, L.; Moretti, A.; Tedesco, R.; Pasqualetto, R. Process for the bulk-polymerization of acrylonitrile., U.S. Patent 3879360A. 1975.
[22]
Charles, M.W. Continuous process for the polymerization of acrylonitrile., U.S. Patent 2777832A. 1957.
[23]
Brubaker, M.M.; Jacobson, R.A. Organic compound polymerization process., WO2006031965A2. 1949.
[24]
Bajaj, P.; Sen, K.; Bahrami, S.H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide. J. Appl. Polym. Sci., 1996, 59(10), 1539-1550.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1539::AID-APP6>3.0.CO;2-N]
[25]
Keskkula, H.; Paul, D. Barlow, J. Polymer blends. In: Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1996.
[26]
Bradzil, J.F. Acrylonitrile. In: Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2000; pp. 1-17.
[27]
Wu, M.M. Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2000.
[28]
Ball, L.E.; Curatolo, B.S. Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2001.
[29]
Kondo, Y.; Yamamoto, T.; Yamamoto, T. Porous flame retardant acrylic synthetic fibers and a method for producing these fibers, U.S. Patent 4623583A. 1982.
[30]
Brydson, J.A. 15 - Acrylic Plastics. In: Plastics Materials, 7th ed; Brydson, J.A., Ed.; Butterworth-Heinemann: Oxford, 1999; pp. 398-424.
[http://dx.doi.org/10.1016/B978-075064132-6/50056-5]
[31]
Salee, G. Polymer blends with improved hydrolytic stability., U.S. Patent 4304709A. 1982.
[32]
McKeen, L.W. Polyesters. In: Fatigue and Tribological Properties of Plastics and Elastomers, 2nd ed; Elsevier: Amsterdam, 2010; pp. 99-147.
[33]
Styrenic copolymersChemical Economics Handbook; IHS Market: London, 2019, pp. 15-110.
[34]
Kutz, M. Applied Plastics Engineering, Handbook: Processing and Materials; Elsevier: Amsterdam, 2011.
[35]
Modesti, M.; Besco, S.; Lorenzetti, A. ABS based nanocomposites. In: Handbook of Polymernanocomposites. Processing, Performance and Application; Pandey, J.K.; Reddy, K.R.; Mohanty, A.K.; Misra, M., Eds.; Springer: Berlin, 2014; pp. 177-203.
[http://dx.doi.org/10.1007/978-3-642-38649-7_18]
[36]
Cincera, D.L.; Dalton, W.O.; Jastrzebski, M.B.; Wyman, C.E. Continuous mass polymerization process for ABS polymeric polyblends., U.S. Patent 3903200A. 1975.
[37]
Simon, R.H. Mass polymerization process for ABS polyblends, U.S. Patent 4417030A. 1981.
[38]
Alfred, B.C.; Peter, S.J.J. Process for polymerizing vinylidene compounds., U.S. Patent 9637564B2. 1951.
[39]
Angnanon, S.; Prasassarakich, P.; Hinchiranan, N. Styrene/acrylonitrile graft natural rubber as compatibilizer in rubber blends. Polym. Plast. Technol. Eng., 2011, 50(11), 1170-1178.
[http://dx.doi.org/10.1080/03602559.2011.574667]
[40]
Kantaros, A.; Karalekas, D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Mater. Des., 2013, 50, 44-50.
[http://dx.doi.org/10.1016/j.matdes.2013.02.067]
[41]
Ziemian, S.; Okwara, M.; Ziemian, C.W. Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyping J., 2015, 21(3), 270-278.
[http://dx.doi.org/10.1108/RPJ-09-2013-0086]
[42]
Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print. Addit. Manuf., 2016, 3(3), 183-192.
[43]
Osman, M.A.; Atia, M.R. Investigation of ABS-rice straw composite feedstock filament for FDM. Rapid Prototyping J., 2018, 24(6), 1067-1075.
[http://dx.doi.org/10.1108/RPJ-11-2017-0242]
[44]
Peterson, A.M. Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Addit. Manuf., 2019, 27, 363-371.
[45]
(ABS) ResinsChemical Economics Handbook; IHS Market: London, 2019, pp. 22-110.
[46]
Castelli, A. New Catalysts for Acrylonitrile Synthesis., Ph. D Thesis, Università di Bologna, Bologna. 2011.
[47]
Callahan, J.L.; Grasselli, R.K.; Milberger, E.C.; Strecker, H.A. Oxidation and ammoxidation of propylene over bismuth molybdate catalyst. Ind. Eng. Chem. Prod. Res. Dev., 1970, 9(2), 134-142.
[http://dx.doi.org/10.1021/i360034a003]
[48]
Grasselli, R.K.; Burrington, J.D.; Brazdil, J.F. Mechanistic features of selective oxidation and ammoxidation catalysis. Faraday Discuss. Chem. Soc., 1981, 72, 203-223.
[http://dx.doi.org/10.1039/dc9817200203]
[49]
Cavani, F.; Centi, G.; Marion, P. Catalytic Ammoxidation of Hydrocarbons on Mixed Oxides; Wiley: New York, 2008, pp. 771-818.
[http://dx.doi.org/10.1002/9783527626113.ch20]
[50]
Edie, D.D. Pitch and Mesophase Fibers.Carbon Fibers Filaments and Composites; Springer: Berlin, 1990, pp. 43-72.
[http://dx.doi.org/10.1007/978-94-015-6847-0_2]
[51]
Edison, T.A. Electric lamp., U.S. Patent 223898A. 1880.
[52]
Park, S-J.; Lee, S-Y. History and structure of carbon fibers. Carbon Fibers; Springer: Berlin, 2015, pp. 1-30.
[53]
Morgan, P. Carbon Fibers and their Composites; CRC Press: Boca Raton, 2005, pp. 121-268.
[http://dx.doi.org/10.1201/9781420028744.ch4]
[54]
Farsani, R. In Production of carbon fibers from acrylic fibersInternational Conference on Chemical, Civil and Environment engineering; Dubai, March 24-25, 2012.
[55]
Choi, D.; Kil, H.S.; Lee, S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon, 2019, 142, 610-649.
[56]
Masson, J. Acrylic Fiber Technology and Applications; CRC Press: Boca Raton, 1995.
[http://dx.doi.org/10.1201/9781482260359]
[57]
Johnson, J.; Marjoram, J.; Rose, P. Stress graphitization of polyacrylonitrile based carbon fibre. Nature, 1969, 221(5178), 357-358.
[http://dx.doi.org/10.1038/221357b0]
[58]
Savage, E. Carbon-Carbon Composites; Springer: Heidelberg, 2012, pp. 45-65.
[59]
Rahaman, M.S.A.; Ismail, A.F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stabil., 2007, 92(8), 1421-1432.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023]
[60]
Sánchez-Soto, P.J.; Avilés, M.; Del Rıo, J.; Ginés, J.; Pascual, J.; Pérez-Rodrıguez, J. Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis. J. Anal. Appl. Pyrolysis, 2001, 58, 155-172.
[http://dx.doi.org/10.1016/S0165-2370(00)00203-5]
[61]
Ko, T.H. Influence of continuous stabilization on the physical properties and microstructure of PAN‐based carbon fibers. J. Appl. Polym. Sci., 1991, 42(7), 1949-1957.
[http://dx.doi.org/10.1002/app.1991.070420719]
[62]
Burlant, W.; Parsons, J. Pyrolysis of polyacrylonitrile. J. Polym. Sci., Polym. Phys. Ed., 1956, 22(101), 249-256.
[63]
Friedlander, H.; Peebles, L., Jr; Brandrup, J.; Kirby, J. On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile. Macromolecules, 1968, 1(1), 79-86.
[http://dx.doi.org/10.1021/ma60001a014]
[64]
Clingerman, M.L. Development and Modeling of Electrically Conductive Composite Materials, Ph.D Thesis, Michigan Technological University, Michigan. 2001.
[65]
David, L.; Ismail, A. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. J. Membr. Sci., 2003, 213(1-2), 285-291.
[http://dx.doi.org/10.1016/S0376-7388(02)00513-6]
[66]
Paiva, M.; Kotasthane, P.; Edie, D.; Ogale, A. UV stabilization route for melt-processible PAN-based carbon fibers. Carbon, 2003, 41(7), 1399-1409.
[http://dx.doi.org/10.1016/S0008-6223(03)00041-1]
[67]
Dalton, S.; Heatley, F.; Budd, P.M. Thermal stabilization of polyacrylonitrile fibres. Polymer (Guildf.), 1999, 40(20), 5531-5543.
[http://dx.doi.org/10.1016/S0032-3861(98)00778-2]
[68]
Edie, D. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998, 36(4), 345-362.
[http://dx.doi.org/10.1016/S0008-6223(97)00185-1]
[69]
Ko, T.H. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. J. Appl. Polym. Sci., 1991, 43(3), 589-600.
[http://dx.doi.org/10.1002/app.1991.070430321]
[70]
Martin, S.; Liggat, J.; Snape, C. In situ NMR investigation into the thermal degradation and stabilisation of PAN. Polym. Degrad. Stabil., 2001, 74(3), 407-412.
[http://dx.doi.org/10.1016/S0141-3910(01)00173-2]
[71]
Ogawa, H.; Saito, K. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon, 1995, 33(6), 783-788.
[http://dx.doi.org/10.1016/0008-6223(95)00007-Z]
[72]
Fitzer, E.; Frohs, W.; Heine, M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon, 1986, 24(4), 387-395.
[http://dx.doi.org/10.1016/0008-6223(86)90257-5]
[73]
Gupta, A.; Harrison, I. New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon, 1996, 34(11), 1427-1445.
[http://dx.doi.org/10.1016/S0008-6223(96)00094-2]
[74]
Mittal, J.; Bahl, O.; Mathur, R. Single step carbonization and graphitization of highly stabilized PAN fibers. Carbon, 1997, 8(35), 1196-1197.
[http://dx.doi.org/10.1016/S0008-6223(97)84653-2]
[75]
Rangarajan, P.; Bhanu, V.; Godshall, D.; Wilkes, G.; McGrath, J.; Baird, D. Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers. Polymer (Guildf.), 2002, 43(9), 2699-2709.
[http://dx.doi.org/10.1016/S0032-3861(02)00077-0]
[76]
Houtz, R.O. Acrylic fiber: Chemistry and properties. Text. Res. J., 1950, 20(11), 786-801.
[http://dx.doi.org/10.1177/004051755002001107]
[77]
Schurz, J. Discoloration effects in acrylonitrile polymers. J. Polym. Sci., Polym. Phys. Ed., 1958, 28(117), 438-439.
[78]
Standage, A.; Matkowsky, R. Thermal oxidation of polyacrylonitrile. Eur. Polym. J., 1971, 7(7), 775-783.
[http://dx.doi.org/10.1016/0014-3057(71)90043-7]
[79]
Konkin, A.A.; Watt, W. Properties of carbon fibers and fields of their application. Production of cellulose based carbon fibrous materials. Chemistry and physics of the conversion of polyacrylonitrile fibers into high modulus carbon fibers. In: Strong Fibers; Watt, W.; Perov, B.V., Eds.; Elsevier Science Publishers: Amsterdam, 1985; pp. 241-273.
[80]
Clarke, A.; Bailey, J. Oxidation of acrylic fibres for carbon fibre formation. Nature, 1973, 243(5403), 146-150.
[http://dx.doi.org/10.1038/243146a0]
[81]
Goodhew, P.; Clarke, A.; Bailey, J. A review of the fabrication and properties of carbon fibres. Mater. Sci. Eng., 1975, 17(1), 3-30.
[http://dx.doi.org/10.1016/0025-5416(75)90026-9]
[82]
Huang, X. Fabrication and properties of carbon fibers. Materials (Basel), 2009, 2(4), 2369-2403.
[http://dx.doi.org/10.3390/ma2042369]
[83]
Fitzer, E.; Müller, D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon, 1975, 13(1), 63-69.
[http://dx.doi.org/10.1016/0008-6223(75)90259-6]
[84]
Donnet, J.; Wang, T.; Peng, J.; Rebouillat, S. Carbon Fibers; Marcel Dekker: New York, 1998.
[http://dx.doi.org/10.1201/9781482285390]
[85]
Peebles, L., Jr; Peyser, P.; Snow, A.; Peters, W. On the exotherm of polyacrylonitrile: Pyrolysis of the homopolymer under inert conditions. Carbon, 1990, 28(5), 707-715.
[http://dx.doi.org/10.1016/0008-6223(90)90073-8]
[86]
Zhu, D.; Xu, C.; Nakura, N.; Matsuo, M. Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon, 2002, 40(3), 363-373.
[87]
Rajalingam, P.; Radhakrishxan, G. Polyacrylonitrile precursor for carbon fibers. J. Macromol. Sci. Part C Polym. Rev., 1991, 31(2-3), 301-310.
[http://dx.doi.org/10.1080/15321799108021925]
[88]
Walsh, P. Handbook-Composites; ASM International: Cleveland, 2001.
[http://dx.doi.org/10.1016/S0008-6223(01)00116-6]
[89]
Oberlin, A. Carbonization and graphitization. Carbon, 1984, 22(6), 521-541.
[http://dx.doi.org/10.1016/0008-6223(84)90086-1]
[90]
Capone, G. Wet-spinning technology; Acrylic Fiber Technology and Applications, 1995, pp. 69-103.
[91]
Prasad, G. Wet spinning of acrylic fiber and effects of spinning variables on fiber formation. Synthetic Fibers, 1985, 1, 6-15.
[92]
Zhang, D. Advances in Filament Yarn Spinning of Textiles and Polymers; Elsevier: Amsterdam, 2014.
[93]
Bunsell, A.R.; Renard, J. Fundamentals of Fibre Reinforced Composite Materials; CRC Press: Boca Raton, 2005, pp. 220-350.
[http://dx.doi.org/10.1201/9781420056969]
[94]
Fukagawa, H.; Hirogaki, T.; Kato, T.; Kato, A.; Seki, T.M. In Development of the Hole Generation Technology for Aircraft CFRP Parts.Key Eng. Mater; , 2012, pp. 226-231.
[95]
Kapidžić, Z.; Nilsson, L.; Ansell, H. Finite element modeling of mechanically fastened composite-aluminum joints in aircraft structures. Compos. Struct., 2014, 109, 198-210.
[http://dx.doi.org/10.1016/j.compstruct.2013.10.056]
[96]
Piancastelli, L.; Frizziero, L.; Zanuccoli, G.; Daidzic, N.; Rocchi, I. A comparison between CFRP and 2195-FSW for aircraft structural designs. Intern. J. Heat Technol., 2013, 31(1), 17-24.
[97]
Tenney, D.R.; Davis, J.G., Jr; Pipes, R.B.; Johnston, N. NASA composite materials development, Lessons learned and future challenges. 2009.
[98]
Witten, E.; Kraus, T.; Kühnel, M. Composites Market Report 2015- Market developments, trends, outlook and challenges. AVK Industrievereinigung verstärkte Kunststoffe, Carbon Composites eV, 2015.
[99]
Pregoretti, A.; Traina, M.; Bunsell, A. Handbook of Tensile Properties of Textile and Technical Fibers; Woodhead Publishing Limited Cambridge: UK, 2009, pp. 592-615.
[100]
Mainka, H.; Täger, O.; Körner, E.; Hilfert, L.; Busse, S.; Edelmann, F.T.; Herrmann, A.S. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber. J. Mater. Res.Technol., 2015, 4(3), 283-296.
[http://dx.doi.org/10.1016/j.jmrt.2015.03.004]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2020
Published on: 11 August, 2020
Page: [570 - 588]
Pages: 19
DOI: 10.2174/1570193X16666190703130542
Price: $65

Article Metrics

PDF: 23
HTML: 2
PRC: 1