Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry

Author(s): Ping Dong, Xueyi Wang, Junwei Zheng, Xiaoyang Zhang, Yiwen Li, Haoxing Wu*, Lin Li*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 23 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.

Keywords: Pretargeting, bioorthogonal chemistry, tetrazine, molecular imaging, Single-Photon Emission Computed tomography, Positron Emission Tomography.

[1]
Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature, 2008, 452(7187), 580-589.
[http://dx.doi.org/10.1038/nature06917] [PMID: 18385732]
[2]
James, M.L.; Gambhir, S.S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev., 2012, 92(2), 897-965.
[http://dx.doi.org/10.1152/physrev.00049.2010] [PMID: 22535898]
[3]
Weissleder, R.; Mahmood, U. Molecular imaging. Radiology, 2001, 219(2), 316-333.
[http://dx.doi.org/10.1148/radiology.219.2.r01ma19316] [PMID: 11323453]
[4]
Row, R.D.; Prescher, J.A. Constructing new bioorthogonal reagents and reactions. Acc. Chem. Res., 2018, 51(5), 1073-1081.
[http://dx.doi.org/10.1021/acs.accounts.7b00606] [PMID: 29727171]
[5]
Ma, X.; Hui, H.; Shang, W.; Jia, X.; Yang, X.; Tian, J. Recent advances in optical molecular imaging and its applications in targeted drug delivery. Curr. Drug Targets, 2015, 16(6), 542-548.
[http://dx.doi.org/10.2174/1389450116666150102112747] [PMID: 25557258]
[6]
Liu, Z.; Wang, F. Dual-targeted molecular probes for cancer imaging. Curr. Pharm. Biotechnol., 2010, 11(6), 610-619.
[http://dx.doi.org/10.2174/138920110792246546] [PMID: 20497116]
[7]
Chen, Q.; Liu, W.; Li, H.; Zhang, H.; Tian, M. Molecular imaging in patients with mood disorders: a review of PET findings. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(7), 1367-1380.
[http://dx.doi.org/10.1007/s00259-011-1779-z] [PMID: 21484378]
[8]
Ballinger, J.R. Pitfalls and limitations of SPECT, PET, and therapeutic radiopharmaceuticals. Semin. Nucl. Med., 2015, 45(5), 470-478.
[http://dx.doi.org/10.1053/j.semnuclmed.2015.02.007] [PMID: 26278857]
[9]
Khalil, M.M.; Tremoleda, J.L.; Bayomy, T.B.; Gsell, W. Molecular SPECT imaging: an overview. Int. J. Mol. Imaging, 2011, 2011, 796025
[http://dx.doi.org/10.1155/2011/796025] [PMID: 21603240]
[10]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[11]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[12]
Holland, J.P.; Williamson, M.J.; Lewis, J.S. Unconventional nuclides for radiopharmaceuticals. Mol. Imaging, 2010, 9(1), 1-20.
[http://dx.doi.org/10.2310/7290.2010.00008] [PMID: 20128994]
[13]
Chen, K.; Chen, X. Design and development of molecular imaging probes. Curr. Top. Med. Chem., 2010, 10(12), 1227-1236.
[http://dx.doi.org/10.2174/156802610791384225] [PMID: 20388106]
[14]
Richter, S.; Wuest, F. 18F-labeled peptides: the future is bright. Molecules, 2014, 19(12), 20536-20556.
[http://dx.doi.org/10.3390/molecules191220536] [PMID: 25493636]
[15]
Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev., 2016, 116(2), 719-766.
[http://dx.doi.org/10.1021/acs.chemrev.5b00493] [PMID: 26751274]
[16]
Adam, M.J.; Wilbur, D.S. Radiohalogens for imaging and therapy. Chem. Soc. Rev., 2005, 34(2), 153-163.
[http://dx.doi.org/10.1039/b313872k] [PMID: 15672179]
[17]
Meyer, J.P.; Adumeau, P.; Lewis, J.S.; Zeglis, B.M. Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem., 2016, 27(12), 2791-2807.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00561] [PMID: 27787983]
[18]
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl., 2009, 48(38), 6974-6998.
[http://dx.doi.org/10.1002/anie.200900942] [PMID: 19714693]
[19]
Prescher, J.A.; Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol., 2005, 1(1), 13-21.
[http://dx.doi.org/10.1038/nchembio0605-13] [PMID: 16407987]
[20]
Boyce, M.; Bertozzi, C.R. Bringing chemistry to life. Nat. Methods, 2011, 8(8), 638-642.
[http://dx.doi.org/10.1038/nmeth.1657] [PMID: 21799498]
[21]
Agard, N.J.; Baskin, J.M.; Prescher, J.A.; Lo, A.; Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol., 2006, 1(10), 644-648.
[http://dx.doi.org/10.1021/cb6003228] [PMID: 17175580]
[22]
Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(43), 16793-16797.
[http://dx.doi.org/10.1073/pnas.0707090104] [PMID: 17942682]
[23]
Codelli, J.A.; Baskin, J.M.; Agard, N.J.; Bertozzi, C.R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc., 2008, 130(34), 11486-11493.
[http://dx.doi.org/10.1021/ja803086r] [PMID: 18680289]
[24]
Jewett, J.C.; Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev., 2010, 39(4), 1272-1279.
[http://dx.doi.org/10.1039/b901970g] [PMID: 20349533]
[25]
Jewett, J.C.; Sletten, E.M.; Bertozzi, C.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc., 2010, 132(11), 3688-3690.
[http://dx.doi.org/10.1021/ja100014q] [PMID: 20187640]
[26]
Saxon, E.; Armstrong, J.I.; Bertozzi, C.R.A. A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett., 2000, 2(14), 2141-2143.
[http://dx.doi.org/10.1021/ol006054v] [PMID: 10891251]
[27]
Saxon, E.; Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science, 2000, 287(5460), 2007-2010.
[http://dx.doi.org/10.1126/science.287.5460.2007] [PMID: 10720325]
[28]
Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L.J.; Rutjes, F.P.; van Hest, J.C.; Lefeber, D.J.; Friedl, P.; van Delft, F.L. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. Engl., 2010, 49(49), 9422-9425.
[http://dx.doi.org/10.1002/anie.201003761] [PMID: 20857472]
[29]
Ning, X.; Temming, R.P.; Dommerholt, J.; Guo, J.; Ania, D.B.; Debets, M.F.; Wolfert, M.A.; Boons, G.J.; van Delft, F.L. Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew. Chem. Int. Ed. Engl., 2010, 49(17), 3065-3068.
[http://dx.doi.org/10.1002/anie.201000408] [PMID: 20333639]
[30]
Sanders, B.C.; Friscourt, F.; Ledin, P.A.; Mbua, N.E.; Arumugam, S.; Guo, J.; Boltje, T.J.; Popik, V.V.; Boons, G.J. Metal-free sequential [3 + 2]-dipolar cycloadditions using cyclooctynes and 1,3-dipoles of different reactivity. J. Am. Chem. Soc., 2011, 133(4), 949-957.
[http://dx.doi.org/10.1021/ja1081519] [PMID: 21182329]
[31]
Lim, R.K.; Lin, Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc. Chem. Res., 2011, 44(9), 828-839.
[http://dx.doi.org/10.1021/ar200021p] [PMID: 21609129]
[32]
Yu, Z.; Ohulchanskyy, T.Y.; An, P.; Prasad, P.N.; Lin, Q. Fluorogenic, two-photon-triggered photoclick chemistry in live mammalian cells. J. Am. Chem. Soc., 2013, 135(45), 16766-16769.
[http://dx.doi.org/10.1021/ja407867a] [PMID: 24168622]
[33]
Blackman, M.L.; Royzen, M.; Fox, J.M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc., 2008, 130(41), 13518-13519.
[http://dx.doi.org/10.1021/ja8053805] [PMID: 18798613]
[34]
Devaraj, N.K.; Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res., 2011, 44(9), 816-827.
[http://dx.doi.org/10.1021/ar200037t] [PMID: 21627112]
[35]
Devaraj, N.K.; Weissleder, R.; Hilderbrand, S.A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem., 2008, 19(12), 2297-2299.
[http://dx.doi.org/10.1021/bc8004446] [PMID: 19053305]
[36]
Wu, H.; Devaraj, N.K. Inverse electron-demand Diels-Alder bioorthogonal reactions. Top. Curr. Chem. (Cham), 2016, 374(1), 3.
[http://dx.doi.org/10.1007/s41061-015-0005-z] [PMID: 27572986]
[37]
Wu, H.; Devaraj, N.K. Advances in tetrazine bioorthogonal chemistry driven by the synthesis of novel tetrazines and dienophiles. Acc. Chem. Res., 2018, 51(5), 1249-1259.
[http://dx.doi.org/10.1021/acs.accounts.8b00062] [PMID: 29638113]
[38]
Li, Q.; Dong, T.; Liu, X.; Lei, X. A bioorthogonal ligation enabled by click cycloaddition of o-quinolinone quinone methide and vinyl thioether. J. Am. Chem. Soc., 2013, 135(13), 4996-4999.
[http://dx.doi.org/10.1021/ja401989p] [PMID: 23521211]
[39]
Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev., 2017, 46(16), 4895-4950.
[http://dx.doi.org/10.1039/C7CS00184C] [PMID: 28660957]
[40]
Sletten, E.M.; Bertozzi, C.R. A bioorthogonal quadricyclane ligation. J. Am. Chem. Soc., 2011, 133(44), 17570-17573.
[http://dx.doi.org/10.1021/ja2072934] [PMID: 21962173]
[41]
Zengeya, T.T.; Garlick, J.M.; Kulkarni, R.A.; Miley, M.; Roberts, A.M.; Yang, Y.; Crooks, D.R.; Sourbier, C.; Linehan, W.M.; Meier, J.L. Co-opting a bioorthogonal reaction for oncometabolite detection. J. Am. Chem. Soc., 2016, 138(49), 15813-15816.
[http://dx.doi.org/10.1021/jacs.6b09706] [PMID: 27960310]
[42]
Ramil, C.P.; An, P.; Yu, Z.; Lin, Q. Sequence-specific 2-cyanobenzothiazole ligation. J. Am. Chem. Soc., 2016, 138(17), 5499-5502.
[http://dx.doi.org/10.1021/jacs.6b00982] [PMID: 27082895]
[43]
Akgun, B.; Li, C.; Hao, Y.; Lambkin, G.; Derda, R.; Hall, D.G. Synergic “click” boronate/thiosemicarbazone system for fast and irreversible bioorthogonal conjugation in live cells. J. Am. Chem. Soc., 2017, 139(40), 14285-14291.
[http://dx.doi.org/10.1021/jacs.7b08693] [PMID: 28891646]
[44]
Zhang, L.; Zhang, X.; Yao, Z.; Jiang, S.; Deng, J.; Li, B.; Yu, Z. Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. J. Am. Chem. Soc., 2018, 140(24), 7390-7394.
[http://dx.doi.org/10.1021/jacs.8b02493] [PMID: 29870240]
[45]
Tu, J.; Xu, M.; Parvez, S.; Peterson, R.T.; Franzini, R.M. Bioorthogonal removal of 3-isocyanopropyl groups enables the controlled release of fluorophores and drugs in vivo. J. Am. Chem. Soc., 2018, 140(27), 8410-8414.
[http://dx.doi.org/10.1021/jacs.8b05093] [PMID: 29927585]
[46]
Walker, O.S.; Elsässer, S.J.; Mahesh, M.; Bachman, M.; Balasubramanian, S.; Chin, J.W. Photoactivation of mutant isocitrate dehydrogenase 2 reveals rapid cancer-associated metabolic and epigenetic changes. J. Am. Chem. Soc., 2016, 138(3), 718-721.
[http://dx.doi.org/10.1021/jacs.5b07627] [PMID: 26761588]
[47]
Nikić, I.; Plass, T.; Schraidt, O.; Szymański, J.; Briggs, J.A.; Schultz, C.; Lemke, E.A. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl., 2014, 53(8), 2245-2249.
[http://dx.doi.org/10.1002/anie.201309847] [PMID: 24474648]
[48]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W.L.; Raj, R.; Faulkner, S.; Vallée, M.R.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M.L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312), 597-608.
[http://dx.doi.org/10.1126/science.aag1465] [PMID: 27708059]
[49]
Zeng, D.; Zeglis, B.M.; Lewis, J.S.; Anderson, C.J. The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals. J. Nucl. Med., 2013, 54(6), 829-832.
[http://dx.doi.org/10.2967/jnumed.112.115550] [PMID: 23616581]
[50]
Choi, J.Y.; Lee, B.C. Click reaction: an applicable radiolabeling method for molecular imaging. Nucl. Med. Mol. Imaging, 2015, 49(4), 258-267.
[http://dx.doi.org/10.1007/s13139-015-0377-6] [PMID: 26550044]
[51]
Weissleder, R.; Schwaiger, M.C.; Gambhir, S.S.; Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl. Med., 2016, 8(355)355ps16
[http://dx.doi.org/10.1126/scitranslmed.aaf3936] [PMID: 27605550]
[52]
Rossin, R.; Verkerk, P.R.; van den Bosch, S.M.; Vulders, R.C.; Verel, I.; Lub, J.; Robillard, M.S. In vivo chemistry for pretargeted tumor imaging in live mice. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3375-3378.
[http://dx.doi.org/10.1002/anie.200906294] [PMID: 20391522]
[53]
Chou, S.N.; Aust, J.B.; Moore, G.E.; Peyton, W.T. Radioactive iodinated human serum albumin as tracer agent for diagnosing and localizing intracranial lesions. Proc. Soc. Exp. Biol. Med., 1951, 77(2), 193-195.
[http://dx.doi.org/10.3181/00379727-77-18720] [PMID: 14853990]
[54]
Hnatowich, D.J.; Griffin, T.W.; Kosciuczyk, C.; Rusckowski, M.; Childs, R.L.; Mattis, J.A.; Shealy, D.; Doherty, P.W. Pharmacokinetics of an indium-111-labeled monoclonal antibody in cancer patients. J. Nucl. Med., 1985, 26(8), 849-858.
[PMID: 3861793]
[55]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312(5777), 1168-1171.
[http://dx.doi.org/10.1126/science.1125949] [PMID: 16728630]
[56]
Weissleder, R.; Nahrendorf, M. Advancing biomedical imaging. Proc. Natl. Acad. Sci. USA, 2015, 112(47), 14424-14428.
[http://dx.doi.org/10.1073/pnas.1508524112] [PMID: 26598657]
[57]
Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3), 313-320.
[http://dx.doi.org/10.1038/nbt1074] [PMID: 15765087]
[58]
Miller, M.A.; Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer, 2017, 17(7), 399-414.
[http://dx.doi.org/10.1038/nrc.2017.41] [PMID: 28642603]
[59]
Patra, M.; Zarschler, K.; Pietzsch, H.J.; Stephan, H.; Gasser, G. New insights into the pretargeting approach to image and treat tumours. Chem. Soc. Rev., 2016, 45(23), 6415-6431.
[http://dx.doi.org/10.1039/C5CS00784D] [PMID: 27722526]
[60]
Goodwin, D.A.; Meares, C.F.; McCall, M.J.; McTigue, M.; Chaovapong, W. Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J. Nucl. Med., 1988, 29(2), 226-234.
[PMID: 3346734]
[61]
Altai, M.; Membreno, R.; Cook, B.; Tolmachev, V.; Zeglis, B.M. Pretargeted Imaging and Therapy. J. Nucl. Med., 2017, 58(10), 1553-1559.
[http://dx.doi.org/10.2967/jnumed.117.189944] [PMID: 28687600]
[62]
Stéen, E.J.L.; Edem, P.E.; Nørregaard, K.; Jørgensen, J.T.; Shalgunov, V.; Kjaer, A.; Herth, M.M. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials, 2018, 179, 209-245.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.021] [PMID: 30007471]
[63]
Sharkey, R.M.; Rossi, E.A.; McBride, W.J.; Chang, C.H.; Goldenberg, D.M. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin. Nucl. Med., 2010, 40(3), 190-203.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.12.002] [PMID: 20350628]
[64]
Goldenberg, D.M.; Chang, C.H.; Rossi, E.A.; J, W.; McBride, ; Sharkey, R.M. Pretargeted molecular imaging and radioimmunotherapy. Theranostics, 2012, 2(5), 523-540.
[http://dx.doi.org/10.7150/thno.3582] [PMID: 22737190]
[65]
van de Watering, F.C.; Rijpkema, M.; Robillard, M.; Oyen, W.J.; Boerman, O.C. Pretargeted imaging and radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry. Front. Med. (Lausanne), 2014, 1, 44.
[http://dx.doi.org/10.3389/fmed.2014.00044] [PMID: 25593917]
[66]
Devaraj, N.K.; Thurber, G.M.; Keliher, E.J.; Marinelli, B.; Weissleder, R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. Proc. Natl. Acad. Sci. USA, 2012, 109(13), 4762-4767.
[http://dx.doi.org/10.1073/pnas.1113466109] [PMID: 22411831]
[67]
Wyffels, L.; Thomae, D.; Waldron, A.M.; Fissers, J.; Dedeurwaerdere, S.; Van der Veken, P.; Joossens, J.; Stroobants, S.; Augustyns, K.; Staelens, S. In vivo evaluation of (18)F-labeled TCO for pre-targeted PET imaging in the brain. Nucl. Med. Biol., 2014, 41(6), 513-523.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.03.023] [PMID: 24768149]
[68]
Rossin, R.; van den Bosch, S.M.; Ten Hoeve, W.; Carvelli, M.; Versteegen, R.M.; Lub, J.; Robillard, M.S. Highly reactive trans-cyclooctene tags with improved stability for Diels-Alder chemistry in living systems. Bioconjug. Chem., 2013, 24(7), 1210-1217.
[http://dx.doi.org/10.1021/bc400153y] [PMID: 23725393]
[69]
Rossin, R.; van Duijnhoven, S.M.; Läppchen, T.; van den Bosch, S.M.; Robillard, M.S. Trans-cyclooctene tag with improved properties for tumor pretargeting with the diels-alder reaction. Mol. Pharm., 2014, 11(9), 3090-3096.
[http://dx.doi.org/10.1021/mp500275a] [PMID: 25077373]
[70]
Rossin, R.; Läppchen, T.; van den Bosch, S.M.; Laforest, R.; Robillard, M.S. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J. Nucl. Med., 2013, 54(11), 1989-1995.
[http://dx.doi.org/10.2967/jnumed.113.123745] [PMID: 24092936]
[71]
van Duijnhoven, S.M.; Rossin, R.; van den Bosch, S.M.; Wheatcroft, M.P.; Hudson, P.J.; Robillard, M.S. Diabody pretargeting with click chemistry in vivo. J. Nucl. Med., 2015, 56(9), 1422-1428.
[http://dx.doi.org/10.2967/jnumed.115.159145] [PMID: 26159589]
[72]
García, M.F.; Zhang, X.; Shah, M.; Newton-Northup, J.; Cabral, P.; Cerecetto, H.; Quinn, T. (99m)Tc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorg. Med. Chem., 2016, 24(6), 1209-1215.
[http://dx.doi.org/10.1016/j.bmc.2016.01.046] [PMID: 26875936]
[73]
Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev., 2010, 110(5), 2858-2902.
[http://dx.doi.org/10.1021/cr900325h] [PMID: 20415480]
[74]
Zeglis, B.M.; Mohindra, P.; Weissmann, G.I.; Divilov, V.; Hilderbrand, S.A.; Weissleder, R.; Lewis, J.S. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry. Bioconjug. Chem., 2011, 22(10), 2048-2059.
[http://dx.doi.org/10.1021/bc200288d] [PMID: 21877749]
[75]
Zeglis, B.M.; Emmetiere, F.; Pillarsetty, N.; Weissleder, R.; Lewis, J.S.; Reiner, T. Building blocks for the construction of bioorthogonally reactive peptides via solid-phase peptide synthesis. ChemistryOpen, 2014, 3(2), 48-53.
[http://dx.doi.org/10.1002/open.201402000] [PMID: 24808990]
[76]
Evans, H.L.; Nguyen, Q.D.; Carroll, L.S.; Kaliszczak, M.; Twyman, F.J.; Spivey, A.C.; Aboagye, E.O. A bioorthogonal (68)Ga-labelling strategy for rapid in vivo imaging. Chem. Commun. (Camb.), 2014, 50(67), 9557-9560.
[http://dx.doi.org/10.1039/C4CC03903C] [PMID: 25012592]
[77]
Luo, H.; Hernandez, R.; Hong, H.; Graves, S.A.; Yang, Y.; England, C.G.; Theuer, C.P.; Nickles, R.J.; Cai, W. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc. Natl. Acad. Sci. USA, 2015, 112(41), 12806-12811.
[http://dx.doi.org/10.1073/pnas.1509667112] [PMID: 26417085]
[78]
Meimetis, L.G.; Boros, E.; Carlson, J.C.; Ran, C.; Caravan, P.; Weissleder, R. Bioorthogonal fluorophore linked dfo-technology enabling facile chelator quantification and multimodal imaging of antibodies. Bioconjug. Chem., 2016, 27(1), 257-263.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00630] [PMID: 26684717]
[79]
Li, Z.; Cai, H.; Hassink, M.; Blackman, M.L.; Brown, R.C.; Conti, P.S.; Fox, J.M. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Commun. (Camb.), 2010, 46(42), 8043-8045.
[http://dx.doi.org/10.1039/c0cc03078c] [PMID: 20862423]
[80]
Reiner, T.; Keliher, E.J.; Earley, S.; Marinelli, B.; Weissleder, R. Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew. Chem. Int. Ed. Engl., 2011, 50(8), 1922-1925.
[http://dx.doi.org/10.1002/anie.201006579] [PMID: 21328671]
[81]
Selvaraj, R.; Liu, S.; Hassink, M.; Huang, C.W.; Yap, L.P.; Park, R.; Fox, J.M.; Li, Z.; Conti, P.S. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg. Med. Chem. Lett., 2011, 21(17), 5011-5014.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.116] [PMID: 21601452]
[82]
Liu, S.; Hassink, M.; Selvaraj, R.; Yap, L.P.; Park, R.; Wang, H.; Chen, X.; Fox, J.M.; Li, Z.; Conti, P.S. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol. Imaging, 2013, 12(2), 121-128.
[http://dx.doi.org/10.2310/7290.2012.00013] [PMID: 23415400]
[83]
Wu, Z.; Liu, S.; Hassink, M.; Nair, I.; Park, R.; Li, L.; Todorov, I.; Fox, J.M.; Li, Z.; Shively, J.E.; Conti, P.S.; Kandeel, F. Development and evaluation of 18F-TTCO-Cys40-Exendin-4: a PET probe for imaging transplanted islets. J. Nucl. Med., 2013, 54(2), 244-251.
[http://dx.doi.org/10.2967/jnumed.112.109694] [PMID: 23297075]
[84]
Selvaraj, R.; Giglio, B.; Liu, S.; Wang, H.; Wang, M.; Yuan, H.; Chintala, S.R.; Yap, L.P.; Conti, P.S.; Fox, J.M.; Li, Z. Improved metabolic stability for 18F PET probes rapidly constructed via tetrazine trans-cyclooctene ligation. Bioconjug. Chem., 2015, 26(3), 435-442.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00089] [PMID: 25679331]
[85]
Rashidian, M.; Keliher, E.J.; Bilate, A.M.; Duarte, J.N.; Wojtkiewicz, G.R.; Jacobsen, J.T.; Cragnolini, J.; Swee, L.K.; Victora, G.D.; Weissleder, R.; Ploegh, H.L. Noninvasive imaging of immune responses. Proc. Natl. Acad. Sci. USA, 2015, 112(19), 6146-6151.
[http://dx.doi.org/10.1073/pnas.1502609112] [PMID: 25902531]
[86]
Forssell, J.; Oberg, A.; Henriksson, M.L.; Stenling, R.; Jung, A.; Palmqvist, R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res., 2007, 13(5), 1472-1479.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2073] [PMID: 17332291]
[87]
DeNardo, D.G.; Andreu, P.; Coussens, L.M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev., 2010, 29(2), 309-316.
[http://dx.doi.org/10.1007/s10555-010-9223-6] [PMID: 20405169]
[88]
Allavena, P.; Sica, A.; Solinas, G.; Porta, C.; Mantovani, A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol., 2008, 66(1), 1-9.
[http://dx.doi.org/10.1016/j.critrevonc.2007.07.004] [PMID: 17913510]
[89]
Wang, M.; Svatunek, D.; Rohlfing, K.; Liu, Y.; Wang, H.; Giglio, B.; Yuan, H.; Wu, Z.; Li, Z.; Fox, J. Conformationally strained trans-cyclooctene (sTCO) enables the rapid construction of (18)F-PET probes via tetrazine ligation. Theranostics, 2016, 6(6), 887-895.
[http://dx.doi.org/10.7150/thno.14742] [PMID: 27162558]
[90]
Denk, C.; Svatunek, D.; Filip, T.; Wanek, T.; Lumpi, D.; Fröhlich, J.; Kuntner, C.; Mikula, H. Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging. Angew. Chem. Int. Ed. Engl., 2014, 53(36), 9655-9659.
[http://dx.doi.org/10.1002/anie.201404277] [PMID: 24989029]
[91]
Rashidian, M.; Keliher, E.; Dougan, M.; Juras, P.K.; Cavallari, M.; Wojtkiewicz, G.R.; Jacobsen, J.; Edens, J.G.; Tas, J.M.; Victora, G.; Weissleder, R.; Ploegh, H. The use of 18F-2-fluorodeoxyglucose (FDG) to label antibody fragments for immuno-PET of pancreatic cancer. ACS Cent. Sci., 2015, 1(3), 142-147.
[http://dx.doi.org/10.1021/acscentsci.5b00121] [PMID: 26955657]
[92]
Keinänen, O.; Li, X.G.; Chenna, N.K.; Lumen, D.; Ott, J.; Molthoff, C.F.; Sarparanta, M.; Helariutta, K.; Vuorinen, T.; Windhorst, A.D.; Airaksinen, A.J. A new highly reactive and low lipophilicity fluorine-18 labeled tetrazine derivative for pretargeted PET imaging. ACS Med. Chem. Lett., 2015, 7(1), 62-66.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00330] [PMID: 26819667]
[93]
Zeglis, B.M.; Sevak, K.K.; Reiner, T.; Mohindra, P.; Carlin, S.D.; Zanzonico, P.; Weissleder, R.; Lewis, J.S. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J. Nucl. Med., 2013, 54(8), 1389-1396.
[http://dx.doi.org/10.2967/jnumed.112.115840] [PMID: 23708196]
[94]
Nichols, B.; Qin, Z.; Yang, J.; Vera, D.R.; Devaraj, N.K. 68Ga chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers. Chem. Commun. (Camb.), 2014, 50(40), 5215-5217.
[http://dx.doi.org/10.1039/C3CC49530B] [PMID: 24589653]
[95]
Hou, S.; Choi, J.S.; Garcia, M.A.; Xing, Y.; Chen, K.J.; Chen, Y.M.; Jiang, Z.K.; Ro, T.; Wu, L.; Stout, D.B.; Tomlinson, J.S.; Wang, H.; Chen, K.; Tseng, H.R.; Lin, W.Y. Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano, 2016, 10(1), 1417-1424.
[http://dx.doi.org/10.1021/acsnano.5b06860] [PMID: 26731174]
[96]
Meyer, J.P.; Tully, K.M.; Jackson, J.; Dilling, T.R.; Reiner, T.; Lewis, J.S. Bioorthogonal masking of circulating antibody-TCO groups using tetrazine-functionalized dextran polymers. Bioconjug. Chem., 2018, 29(2), 538-545.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00028] [PMID: 29378403]
[97]
Zhang, X.; Lin, Y.; Gillies, R.J. Tumor pH and its measurement. J. Nucl. Med., 2010, 51(8), 1167-1170.
[http://dx.doi.org/10.2967/jnumed.109.068981] [PMID: 20660380]
[98]
Segala, J.; Engelman, D.M.; Reshetnyak, Y.K.; Andreev, O.A. Accurate analysis of tumor margins using a fluorescent pH Low Insertion Peptide (pHLIP). Int. J. Mol. Sci., 2009, 10(8), 3478-3487.
[http://dx.doi.org/10.3390/ijms10083478] [PMID: 20111691]
[99]
Emmetiere, F.; Irwin, C.; Viola-Villegas, N.T.; Longo, V.; Cheal, S.M.; Zanzonico, P.; Pillarsetty, N.; Weber, W.A.; Lewis, J.S.; Reiner, T. (18)F-labeled-bioorthogonal liposomes for in vivo targeting. Bioconjug. Chem., 2013, 24(11), 1784-1789.
[http://dx.doi.org/10.1021/bc400322h] [PMID: 24180480]
[100]
Meyer, J.P.; Houghton, J.L.; Kozlowski, P.; Abdel-Atti, D.; Reiner, T.; Pillarsetty, N.V.; Scholz, W.W.; Zeglis, B.M.; Lewis, J.S. (18)F-based pretargeted pet imaging based on bioorthogonal Diels-Alder click chemistry. Bioconjug. Chem., 2016, 27(2), 298-301.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00504] [PMID: 26479967]
[101]
Keinänen, O.; Mäkilä, E.M.; Lindgren, R.; Virtanen, H.; Liljenbäck, H.; Oikonen, V.; Sarparanta, M.; Molthoff, C.; Windhorst, A.D.; Roivainen, A.; Salonen, J.J.; Airaksinen, A.J. Pretargeted PET imaging of trans-cyclooctene-modified porous silicon nanoparticles. ACS Omega, 2017, 2(1), 62-69.
[http://dx.doi.org/10.1021/acsomega.6b00269] [PMID: 28649670]
[102]
Billaud, E.M.F.; Shahbazali, E.; Ahamed, M.; Cleeren, F.; Noël, T.; Koole, M.; Verbruggen, A.; Hessel, V.; Bormans, G. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem. Sci. (Camb.), 2017, 8(2), 1251-1258.
[http://dx.doi.org/10.1039/C6SC02933G] [PMID: 28451267]
[103]
Billaud, E.M.F.; Belderbos, S.; Cleeren, F.; Maes, W.; Van de Wouwer, M.; Koole, M.; Verbruggen, A.; Himmelreich, U.; Geukens, N.; Bormans, G. Pretargeted PET imaging using a bioorthogonal 18F-labeled trans-cyclooctene in an ovarian carcinoma model. Bioconjug. Chem., 2017, 28(12), 2915-2920.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00635] [PMID: 29191024]
[104]
Shi, X.; Gao, K.; Huang, H.; Gao, R. Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer. Bioconjug. Chem., 2018, 29(2), 250-254.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00023] [PMID: 29338219]
[105]
Herth, M.M.; Andersen, V.L.; Lehel, S.; Madsen, J.; Knudsen, G.M.; Kristensen, J.L. Development of a 11C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation. Chem. Commun. (Camb.), 2013, 49(36), 3805-3807.
[http://dx.doi.org/10.1039/c3cc41027g] [PMID: 23535705]
[106]
Denk, C.; Svatunek, D.; Mairinger, S.; Stanek, J.; Filip, T.; Matscheko, D.; Kuntner, C.; Wanek, T.; Mikula, H. Design, synthesis, and evaluation of a low-molecular-weight (11)C-labeled tetrazine for pretargeted PET imaging applying bioorthogonal in vivo click chemistry. Bioconjug. Chem., 2016, 27(7), 1707-1712.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00234] [PMID: 27308894]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 23
Year: 2020
Page: [3924 - 3943]
Pages: 20
DOI: 10.2174/1386207322666190702105829
Price: $65

Article Metrics

PDF: 25
HTML: 2
EPUB: 2
PRC: 1