Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases?

Author(s): Sandra Cortez-Maya, Antonio Moreno-Herrera, Isidro Palos, Gildardo Rivera*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 32 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis) and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the discovery and development of new compounds that can compete and replace these drugs that have been controlling parasitic infections over the last decades. However, this approach is highly resource- intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively being used as a fast approach towards the identification of new treatments. The artemisinins, mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates. Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago, are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance to define their suitability for repurposing strategies. Current antiparasitic drugs are not only still viable for the treatment of helminth and protozoan infections but are also important candidates for new pharmacological treatments.

Keywords: Parasitic diseases, helminths, protozoa, drugs, design, infections, treatments.

WHO. Health topic: neglected tropical diseases. Available at:, https://www.who.int/neglected_diseases/en/ (Accessed Date: 17th May, 2017)
World Health Organization. Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases a Roadmap for Implementation; World Health Organization, 2012.
Liu, L.X.; Weller, P.F.; Peter, F.; Weller, M.D. Antiparasitic drugs. N. Engl. J. Med., 1996, 334(18), 1178-1184.
[http://dx.doi.org/10.1056/NEJM199605023341808] [PMID: 8602186]
WHO model prescribing information: drugs used in parasitic diseases. World Health Organization 2nd Edition,; , 1995.
Sundar, S.; Jha, T.K.; Thakur, C.P.; Sinha, P.K.; Bhattacharya, S.K. Injectable paromomycin for Visceral leishmaniasis in India. N. Engl. J. Med., 2007, 356(25), 2571-2581.
[http://dx.doi.org/10.1056/NEJMoa066536] [PMID: 17582067]
Panic, G.; Duthaler, U.; Speich, B.; Keiser, J. Repurposing drugs for the treatment and control of helminth infections. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(3), 185-200.
[http://dx.doi.org/10.1016/j.ijpddr.2014.07.002] [PMID: 25516827]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; Dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
Breslow, R.; Bahary, W.; Reinmuth, W. Antiparasitic drugs. Iv. 2-(4′-Thiazolyl) Benzimidazole, a new anthelmintic. J. Am. Chem. Soc., 1961, 83(7), 1764-1765.
Vinaud, M.C.; de Souza, R. Mode of action of the main anti-parasitic drugs. Rev. Patol. Trop., 2017, 46(2), 121-133.
Lacey, E. Mode of action of benzimidazoles. Parasitol. Today, 1990, 6(4), 112-115.
Delatour, P.; Richard, Y. The embryotoxic and antimitotic properties of a series of benzimidazoles Therapie, 1976, 31(4), 505-515.
[PMID: 1034351]
Lacey, E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int. J. Parasitol., 1988, 18(7), 885-936.
[http://dx.doi.org/10.1016/0020-7519(88)90175-0] [PMID: 3066771]
Čáňová, K.; Rozkydalová, L.; Rudolf, E. Anthelmintic flubendazole and its potential use in anticancer therapy. Acta Med. (Hradec Kralove), 2017, 60(1), 5-11.
[http://dx.doi.org/10.14712/18059694.2017.44] [PMID: 28399389]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
Pourgholami, M.H.; Yan Cai, Z.; Lu, Y.; Wang, L.; Morris, D.L. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin. Cancer Res., 2006, 12(6), 1928-1935.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1181] [PMID: 16551879]
Grove, D.I. Treatment of strongyloidiasis with thiabendazole: an analysis of toxicity and effectiveness. Trans. R. Soc. Trop. Med. Hyg., 1982, 76(1), 114-118.
[http://dx.doi.org/10.1016/0035-9203(82)90034-7] [PMID: 7080143]
Igual-Adell, R.; Oltra-Alcaraz, C.; Soler-Company, E.; Sánchez-Sánchez, P.; Matogo-Oyana, J.; Rodríguez-Calabuig, D. Efficacy and safety of ivermectin and thiabendazole in the treatment of strongyloidiasis. Expert Opin. Pharmacother., 2004, 5(12), 2615-2619.
[http://dx.doi.org/10.1517/14656566.5.12.2615] [PMID: 15571478]
James, S.; McCarthy, T.A. Moore. Drugs for helminths. In:Principles and Practice of Infectious Diseases; Bennett, J.E.; Dolin, R.; Blaser, M.J., Eds.; , 2015, Vol. 1, pp. 519-527.e3.
Zhang, C.; Zhong, B.; Yang, S. Liangkun., Yu; S., Li, Z.; Li, S.; Su, B.; Meng, X. Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorg. Med. Chem., 2015, 23(13), 3774-3780.
[http://dx.doi.org/10.1016/j.bmc.2015.03.085] [PMID: 25936258]
WHO model list of essential medicines. World Health Organization, 2015. Available at: http://www.who.int/medicines/publications/essentialmedicines/en/ (Accessed Date: 21st June, 2017).
Kan, S.P. Efficacy of single doses of mebendazole in the treatment of Trichuris trichiura infection. Am. J. Trop. Med. Hyg., 1983, 32(1), 118-122.
[http://dx.doi.org/10.4269/ajtmh.1983.32.118] [PMID: 6824117]
Mrus, J.; Baeten, B.; Engelen, M.; Silber, S.A. Efficacy of single-dose 500 mg mebendazole in soil-transmitted helminth infections: a review. J. Helminthol., 2018, 92(3), 269-278.
[http://dx.doi.org/10.1017/S0022149X17000426] [PMID: 28716158]
Keystone, J.S.; Murdoch, J.K. Mebendazole. Ann. Intern. Med., 1979, 91(4), 582-586.
[http://dx.doi.org/10.7326/0003-4819-91-4-582] [PMID: 484964]
Summary of product characteristics. Available at: https://www.medicines.org.uk/emc/product/975/smpc (Accessed Date: 21st June, 2017).
Geerts, S.; Gryseels, B. Drug resistance in human helminths: current situation and lessons from livestock. Clin. Microbiol. Rev., 2000, 13(2), 207-222.
[http://dx.doi.org/10.1128/CMR.13.2.207] [PMID: 10755998]
Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Del Poeta, M.; Vainstein, M.H.; Rodrigues, M.L. The anti-helminthic compound mebendazole has multiple antifungal effects against cryptococcus neoformans. Front. Microbiol., 2017, 8(535), 535.
[http://dx.doi.org/10.3389/fmicb.2017.00535] [PMID: 28400768]
De Witt, M.; Gamble, A.; Hanson, D.; Markowitz, D.; Powell, C.; Al Dimassi, S.; Atlas, M.; Boockvar, J.; Ruggieri, R.; Symons, M. Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol. Med., 2017, 23, 50-56.
[http://dx.doi.org/10.2119/molmed.2017.00011] [PMID: 28386621]
Celestino Pinto, L.; de Fátima Aquino Moreira-Nunes, C.; Soares, B.M.; Burbano, R.M.R.; de Lemos, J.A.R.; Montenegro, R.C. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis. Toxicol. In Vitro, 2017, 43, 87-91.
[http://dx.doi.org/10.1016/j.tiv.2017.06.007] [PMID: 28606429]
Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther., 2002, 1(13), 1201-1209.
[PMID: 12479701]
Bai, R.Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-oncol., 2011, 13(9), 974-982.
[http://dx.doi.org/10.1093/neuonc/nor077] [PMID: 21764822]
Kan, S.P. The anthelmintic effects of flubendazole on Trichuris trichiura and Ascaris lumbricoides. Trans. R. Soc. Trop. Med. Hyg., 1983, 77(5), 668-670.
[http://dx.doi.org/10.1016/0035-9203(83)90199-2] [PMID: 6659046]
Bagheri, H.; Simiand, E.; Montastruc, J.L.; Magnaval, J.F. Adverse drug reactions to anthelmintics. Ann. Pharmacother., 2004, 38(3), 383-388.
[http://dx.doi.org/10.1345/aph.1D325] [PMID: 14749518]
Geary, T.G.; Mackenzie, C.D.; Silber, S.A. Flubendazole as a macrofilaricide: history and background. PLoS Negl. Trop. Dis., 2019, 13(1), e0006436.
[http://dx.doi.org/10.1371/journal.pntd.0006436] [PMID: 30650160]
Mackenzie, C.D.; Geary, T.G. Flubendazole: a candidate macrofilaricide for lymphatic filariasis and onchocerciasis field programs. Expert Rev. Anti Infect. Ther., 2011, 9(5), 497-501.
[http://dx.doi.org/10.1586/eri.11.30] [PMID: 21609260]
Ceballos, L.; Alvarez, L.; Mackenzie, C.; Geary, T.; Lanusse, C. Pharmacokinetic comparison of different flubendazole formulations in pigs: a further contribution to its development as a macrofilaricide molecule. Int. J. Parasitol. Drugs Drug Resist., 2015, 5(3), 178-184.
[http://dx.doi.org/10.1016/j.ijpddr.2015.09.001] [PMID: 27120064]
Michaelis, M.; Agha, B.; Rothweiler, F.; Löschmann, N.; Voges, Y.; Mittelbronn, M.; Starzetz, T.; Harter, P.N.; Abhari, B.A.; Fulda, S.; Westermann, F.; Riecken, K.; Spek, S.; Langer, K.; Wiese, M.; Dirks, W.G.; Zehner, R.; Cinatl, J.; Wass, M.N.; Cinatl, J., Jr Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci. Rep., 2015, 5(8202), 8202.
[http://dx.doi.org/10.1038/srep08202] [PMID: 25644037]
Hou, Z.J.; Luo, X.; Zhang, W.; Peng, F.; Cui, B.; Wu, S.J.; Zheng, F.M.; Xu, J.; Xu, L.Z.; Long, Z.J.; Wang, X.T.; Li, G.H.; Wan, X.Y.; Yang, Y.L.; Liu, Q. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget, 2015, 6(8), 6326-6340.
[http://dx.doi.org/10.18632/oncotarget.3436] [PMID: 25811972]
Zhang, L.; Guo, M.; Li, J.; Zheng, Y.; Zhang, S.; Xie, T.; Liu, B. Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Mol. Biosyst., 2015, 11(11), 2860-2866.
[http://dx.doi.org/10.1039/C5MB00466G] [PMID: 26299935]
Davis, A.; Pawlowski, Z.S.; Dixon, H. Multicentre clinical trials of benzimidazolecarbamates in human echinococcosis. Bull. World Health Organ., 1986, 64(3), 383-388.
[PMID: 3533299]
Brunetti, E.; Kern, P.; Vuitton, D.A. Writing Panel for the WHO-IWGE. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop., 2010, 114(1), 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2009.11.001] [PMID: 19931502]
Choi, G.Y.; Yang, H.W.; Cho, S.H.; Kang, D.W.; Go, H.; Lee, W.C.; Lee, Y.J.; Jung, S.H.; Kim, A.N.; Cha, S.W. Acute drug-induced hepatitis caused by albendazole. J. Korean Med. Sci., 2008, 23(5), 903-905.
[http://dx.doi.org/10.3346/jkms.2008.23.5.903] [PMID: 18955802]
Meloni, B.P.; Thompson, R.C.A.; Reynoldson, J.A.; Seville, P. Albendazole: a more effective antigiardial agent in vitro than metronidazole or tinidazole. Trans. R. Soc. Trop. Med. Hyg., 1990, 84(3), 375-379.
[http://dx.doi.org/10.1016/0035-9203(90)90324-8] [PMID: 2136253]
Escobedo, A.A.; Ballesteros, J.; González-Fraile, E.; Almirall, P. A meta-analysis of the efficacy of albendazole compared with tinidazole as treatments for Giardia infections in children. Acta Trop., 2016, 153, 120-127.
[http://dx.doi.org/10.1016/j.actatropica.2015.09.023] [PMID: 26476393]
Cobo, F. Determinants of parasite drug resistance in human lymphatic filariasis. Rev. Esp. Quimioter., 2016, 29(6), 288-295.
[PMID: 27858056]
Jayakody, R.L.; de Silva, C.S.S.; Weerasinghe, W.M.T. Treatment of bancroftian filariasis with albendazole: evaluation of efficacy and adverse reactions. Trop. Biomed., 1993, 10, 19-24.
Del Brutto, O.H.; Roos, K.L.; Coffey, C.S.; García, H.H. Meta-analysis: cysticidal drugs for neurocysticercosis: albendazole and praziquantel. Ann. Intern. Med., 2006, 145(1), 43-51.
[http://dx.doi.org/10.7326/0003-4819-145-1-200607040-00009] [PMID: 16818928]
Garcia, H.H.; Gonzales, I.; Lescano, A.G.; Bustos, J.A.; Zimic, M.; Escalante, D.; Saavedra, H.; Gavidia, M.; Rodriguez, L.; Najar, E.; Umeres, H.; Pretell, E.J. Cysticercosis working group in Peru. Efficacy of combined antiparasitic therapy with praziquantel and albendazole for neurocysticercosis: a double-blind, randomised controlled trial. Lancet Infect. Dis., 2014, 14(8), 687-695.
[http://dx.doi.org/10.1016/S1473-3099(14)70779-0] [PMID: 24999157]
Patel, K.; Doudican, N.A.; Schiff, P.B.; Orlow, S.J. Albendazole sensitizes cancer cells to ionizing radiation. Radiat. Oncol., 2011, 6, 160.
[http://dx.doi.org/10.1186/1748-717X-6-160] [PMID: 22094106]
Pourgholami, M.H.; Woon, L.; Almajd, R.; Akhter, J.; Bowery, P.; Morris, D.L. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett., 2001, 165(1), 43-49.
[http://dx.doi.org/10.1016/S0304-3835(01)00382-2] [PMID: 11248417]
Pourgholami, M.H.; Akhter, J.; Wang, L.; Lu, Y.; Morris, D.L. Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: in vitro and in a xenograft model of peritoneal carcinomatosis. Cancer Chemother. Pharmacol., 2005, 55(5), 425-432.
[http://dx.doi.org/10.1007/s00280-004-0927-6] [PMID: 15565325]
Zhang, X.; Zhao, J.; Gao, X.; Pei, D.; Gao, C. Anthelmintic drug albendazole arrests human gastric cancer cells at the mitotic phase and induces apoptosis. Exp. Ther. Med., 2017, 13(2), 595-603.
[http://dx.doi.org/10.3892/etm.2016.3992] [PMID: 28352336]
Ghasemi, F.; Black, M.; Vizeacoumar, F.; Pinto, N.; Ruicci, K.M.; Le, C.C.S.H.; Lowerison, M.R.; Leong, H.S.; Yoo, J.; Fung, K.; MacNeil, D.; Palma, D.A.; Winquist, E.; Mymryk, J.S.; Boutros, P.C.; Datti, A.; Barrett, J.W.; Nichols, A.C. Repurposing Albendazole: new potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer. Oncotarget, 2017, 8(42), 71512-71519.
[http://dx.doi.org/10.18632/oncotarget.17292] [PMID: 29069723]
Burg, R.W.; Miller, B.M.; Baker, E.E.; Birnbaum, J.; Currie, S.A.; Hartman, R. Kong, Y.L.; Monaghan, R.L.; Olson, G.; Putter, I.; Tunac, J.B.; Wallick, H.; Stapley, E.O.; Oiwa, R.; Omura, S. A vermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents Chemother., 1979, 15, 361-367.
[http://dx.doi.org/10.1128/AAC.15.3.361] [PMID: 464561]
Chabala, J.C.; Mrozik, H.; Tolman, R.L.; Eskola, P.; Lusi, A.; Peterson, L.H.; Woods, M.F.; Fisher, M.H.; Campbell, W.C.; Egerton, J.R.; Ostlind, D.A. Ivermectin, a new broad-spectrum antiparasitic agent. J. Med. Chem., 1980, 23(10), 1134-1136.
[http://dx.doi.org/10.1021/jm00184a014] [PMID: 6893469]
Laing, R.; Gillan, V.; Devaney, E. Ivermectin - old drug, new tricks? Trends Parasitol., 2017, 33(6), 463-472.
[http://dx.doi.org/10.1016/j.pt.2017.02.004] [PMID: 28285851]
Henriquez-Camacho, C.; Gotuzzo, E.; Echevarria, J.; White, A.C., Jr; Terashima, A.; Samalvides, F.; Pérez-Molina, J.A.; Plana, M.N. Ivermectin versus albendazole or thiabendazole for Strongyloides stercoralis infection. Cochrane Database Syst. Rev., 2016, 1(1), CD007745.
[http://dx.doi.org/10.1002/14651858.CD007745.pub3] [PMID: 26778150]
Winnen, M.; Plaisier, A.P.; Alley, E.S.; Nagelkerke, N.J.; van Oortmarssen, G.; Boatin, B.A.; Habbema, J.D. Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bull. World Health Organ., 2002, 80(5), 384-391.
[PMID: 12077614]
Molyneux, D.H.; Zagaria, N. Lymphatic filariasis elimination: progress in global programme development. Ann. Trop. Med. Parasitol., 2002, 96(Suppl. 2), S15-S40.
[http://dx.doi.org/10.1179/000349802125002374] [PMID: 12630391]
dos Santos, A.R.; Falcão, C.A.; Muzitano, M.F.; Kaiser, C.R.; Rossi-Bergmann, B.; Férézou, J.P. Ivermectin-derived leishmanicidal compounds. Bioorg. Med. Chem., 2009, 17(2), 496-502.
[http://dx.doi.org/10.1016/j.bmc.2008.12.003] [PMID: 19114308]
Enk, C.D. Onchocerciasis--river blindness. Clin. Dermatol., 2006, 24(3), 176-180.
[http://dx.doi.org/10.1016/j.clindermatol.2005.11.008] [PMID: 16714198]
Dourmishev, A.L.; Dourmishev, L.A.; Schwartz, R.A. Ivermectin: pharmacology and application in dermatology. Int. J. Dermatol., 2005, 44(12), 981-988.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02253.x] [PMID: 16409259]
Campbell, W.C. Ivermectin: an update. Parasitol. Today, 1985, 1(1), 10-16.
Chandler, R.E. Serious neurological adverse events after ivermectin-do they occur beyond the indication of onchocerciasis? Am. J. Trop. Med. Hyg., 2018, 98(2), 382-388.
[http://dx.doi.org/10.4269/ajtmh.17-0042] [PMID: 29210346]
Chaccour, C.; Rabinovich, N.R. Ivermectin to reduce malaria transmission III. Considerations regarding regulatory and policy pathways. Malar. J., 2017, 16(1), 162.
[http://dx.doi.org/10.1186/s12936-017-1803-2] [PMID: 28434407]
da Cruz, F.P.; Martin, C.; Buchholz, K.; Lafuente-Monasterio, M.J.; Rodrigues, T.; Sönnichsen, B.; Moreira, R.; Gamo, F.J.; Marti, M.; Mota, M.M.; Hannus, M.; Prudêncio, M. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis., 2012, 205(8), 1278-1286.
[http://dx.doi.org/10.1093/infdis/jis184] [PMID: 22396598]
Costa, J.L.; Diazgranados, J.A. Ivermectin for spasticity in spinal-cord injury. Lancet, 1994, 343(8899), 739.
[http://dx.doi.org/10.1016/S0140-6736(94)91625-X] [PMID: 7907715]
Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331.
[PMID: 29511601]
Sharmeen, S.; Skrtic, M.; Sukhai, M.A.; Hurren, R.; Gronda, M.; Wang, X.; Fonseca, S.B.; Sun, H.; Wood, T.E.; Ward, R.; Minden, M.D.; Batey, R.A.; Datti, A.; Wrana, J.; Kelley, S.O.; Schimmer, A.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, 2010, 116(18), 3593-3603.
[http://dx.doi.org/10.1182/blood-2010-01-262675] [PMID: 20644115]
Mackenzie, C.D.; Kron, M.A. Diethylcarbamazine: a review of its action in onchocerciasis, lymphatic filariasis and inflammation. Trop. Dis. Bull., 1985, 82, R1-R36.
Thomsen, E.K.; Sanuku, N.; Baea, M.; Satofan, S.; Maki, E.; Lombore, B.; Schmidt, M.S.; Siba, P.M.; Weil, G.J.; Kazura, J.W.; Fleckenstein, L.L.; King, C.L. Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of bancroftian filariasis. Clin. Infect. Dis., 2016, 62(3), 334-341.
[http://dx.doi.org/10.1093/cid/civ882] [PMID: 26486704]
Kanesa-thasan, N.; Douglas, J.G.; Kazura, J.W. Diethylcarbamazine inhibits endothelial and microfilarial prostanoid metabolism in vitro. Mol. Biochem. Parasitol., 1991, 49(1), 11-19.
[http://dx.doi.org/10.1016/0166-6851(91)90125-P] [PMID: 1775151]
Maizels, R.M.; Denham, D.A. Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug. Parasitology, 1992, 105(Suppl.), S49-S60.
[http://dx.doi.org/10.1017/S0031182000075351] [PMID: 1308929]
WHO model prescribing information: drugs used in parasitic diseases-second edition. World Health Organization, 1995. Available at: http://apps.who.int/medicinedocs/en/d/Jh2922e/ (Accessed Date: 29th June, 2017)
Essential medicines and health products information portal. WHO, 2017. Available at: http://apps.who.int/medicinedocs/en/ (Accessed Date: 21st June, 2017)
Summary of product characteristics for notezine. Sanofi, https://extranet.who.int/prequal/sites/default/files/NT001Part4v1.pdf (Accessed Date: 29th September, 2017)
Vargas, L.; Tovar, J. Resistance of Onchocerca volvulus microfilariae to diethylcarbamazine. Bull. World Health Organ., 1957, 16(3), 682-683.
[PMID: 13472422]
Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: a review. Eur. J. Pharmacol., 2014, 734(34), 35-41.
[http://dx.doi.org/10.1016/j.ejphar.2014.03.046] [PMID: 24726556]
Gryseels, B. Schistosomiasis. Infect. Dis. Clin. North Am., 2012, 26(2), 383-397.
[http://dx.doi.org/10.1016/j.idc.2012.03.004] [PMID: 22632645]
Coulibaly, J.T.; N’gbesso, Y.K.; Knopp, S.; Keiser, J.; N’Goran, E.K.; Utzinger, J. Efficacy and safety of praziquantel in preschool-aged children in an area co-endemic for Schistosoma mansoni and S. haematobium. PLoS Negl. Trop. Dis., 2012, 6(12), e1917.
[http://dx.doi.org/10.1371/journal.pntd.0001917] [PMID: 23236526]
Olliaro, P.; Delgado-Romero, P.; Keiser, J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J. Antimicrob. Chemother., 2014, 69(4), 863-870.
[http://dx.doi.org/10.1093/jac/dkt491] [PMID: 24390933]
Cupit, P.M.; Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem., 2015, 7(6), 701-705.
[http://dx.doi.org/10.4155/fmc.15.11] [PMID: 25996063]
Alsaqabi, S.M.; Lotfy, W.M. Praziquantel: a review. J. Veterinar. Sci. Technolo., 2014, 5, 5.
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
Wu, Z.H.; Lu, M.K.; Hu, L.Y.; Li, X. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth. PLoS One, 2012, 7(12), e51721.
[http://dx.doi.org/10.1371/journal.pone.0051721] [PMID: 23251610]
Willcox, G.; Bodeker, G.; Rasoanaivo, P. Traditional medicinal plants and Malaria; CRC Press, 2005, p. 231.
Goldsmith, R.; Botero, D. Drugs for the treatment of amebiasis and other intestinal protozoal infections in: Tropical Medicine and Parasitology, Appleton and Lange. R. Goldsmith, D. Heyneman (Eds.), E. Norwalk, CT,, 1989, pp. 835-840.
Danis, M. Medicaments antipaludiques in: Paludism; Danis, M; Mouchet, J., Ed.; Ellipses: Paris, 1991, pp. 131-145.
Richard-Lenoble, D.; Lagardere, B. Le paludisme et l’enfant in: Paludism; Danis, M; Mouchet, J., Ed.; Elipses: Paris, 1991, pp. 100-108.
Suebsaeng, L.; Wernsdorfer, W.H.; Rooney, W. Sensitivity to quinine and mefloquine of plasmodium falciparum in Thailand. Bull. World Health Organ., 1986, 64(5), 759-765.
[PMID: 3542267]
Meshnick, S.R. Chloroquine as intercalator: a hypothesis revived. Parasitol. Today, 1990, 6(3), 77-79.
Laser, H.; Kemp, P.; Miller, N.; Lander, D.; Klein, R. Malaria, quinine and red cell lysis. Parasitology, 1975, 71(2), 167-181.
[http://dx.doi.org/10.1017/S003118200004662X] [PMID: 1187180]
Frayha, G.J.; Smyth, J.D.; Gobert, J.G.; Savel, J. The mechanisms of action of antiprotozoal and anthelmintic drugs in man. Gen. Pharmacol., 1997, 28(2), 273-299.
[http://dx.doi.org/10.1016/S0306-3623(96)00149-8] [PMID: 9013207]
Cowman, A.F.; Foote, S.J. Chemotherapy and drug resistance in malaria. Int. J. Parasitol., 1990, 20(4), 503-513.
[http://dx.doi.org/10.1016/0020-7519(90)90198-V] [PMID: 2210944]
Okombo, J.; Ohuma, E.; Picot, S.; Nzila, A. Update on genetic markers of quinine resistance in Plasmodium falciparum. Mol. Biochem. Parasitol., 2011, 177(2), 77-82.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.012] [PMID: 21295079]
Malakar, S.; Sreelatha, L.; Dechtawewat, T.; Noisakran, S.; Yenchitsomanus, P.T.; Chu, J.J.H.; Limjindaporn, T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res., 2018, 255, 171-178.
[http://dx.doi.org/10.1016/j.virusres.2018.07.018] [PMID: 30055216]
Grandics, P. Cancer: a single disease with a multitude of manifestions? J. Carcinog., 2003, 2(1), 9.
[http://dx.doi.org/10.1186/1477-3163-2-9] [PMID: 14624698]
Basco, L.K.; Ruggeri, C.; Le Bras, J. Molécules antipalu-diques: mécanismes d’action, mécanismes de résistance et relations strucutre-activité des schizontocides sanguins; Masson: Paris, 1994.
Thomé, R.; Lopes, S.C.; Costa, F.T.; Verinaud, L. Chloroquine: modes of action of an undervalued drug. Immunol. Lett., 2013, 153(1-2), 50-57.
[http://dx.doi.org/10.1016/j.imlet.2013.07.004] [PMID: 23891850]
D’Alessandro, U.; Buttiëns, H. History and importance of antimalarial drug resistance. Trop. Med. Int. Health, 2001, 6(11), 845-848.
[http://dx.doi.org/10.1046/j.1365-3156.2001.00819.x] [PMID: 11703837]
Savel, J.; Le Bras, J. Antiparasitaires in: Encyclopedie Medico-Chirugicale. Maladies Infectueuses; SGIM-Les Martres-de-Veyre: Paris, 1993, pp. 1-19.
Remy-Kristensen, A.; Pesson, B. Mecanismes d’action des antiparasitaires in: Pharmacologie Moleculaire. Mecanisme d’Action des Mediateurs et des Medicaments; Landry, Y., Ed.; Arnette: Paris, 1993, pp. 695-725.
(a) Krogstad, D. J.; Schlesinger, P. H.; Herwaldt, B. L. Antimalarial agents: mechanism of chloroquine resistance. Antimicrob Agents Chemother., 1988, 32(6), 799-801.
[http://dx.doi.org/10.1128/aac.32.6.799] [PMID: 3046480]
b)Slater, A.F.G.; Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 1992, 355(6356), 167-169.
[http://dx.doi.org/10.1038/355167a0] [PMID: 1729651]
Li, C.; Zhu, X.; Ji, X.; Quanquin, N.; Deng, Y.Q.; Tian, M.; Aliyari, R.; Zuo, X.; Yuan, L.; Afridi, S.K.; Li, X.F.; Jung, J.U.; Nielsen-Saines, K.; Qin, F.X.; Qin, C.F.; Xu, Z.; Cheng, G. Chloroquine, a FDA-approved drug, prevents zika virus infection and its associated congenital microcephaly in mice. EBioMedicine, 2017, 24, 189-194.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.034] [PMID: 29033372]
Burikhanov, R.; Hebbar, N.; Noothi, S.K.; Shukla, N.; Sledziona, J.; Araujo, N.; Kudrimoti, M.; Wang, Q.J.; Watt, D.S.; Welch, D.R.; Maranchie, J.; Harada, A.; Rangnekar, V.M. Chloroquine-inducible par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep., 2017, 18(2), 508-519.
[http://dx.doi.org/10.1016/j.celrep.2016.12.051] [PMID: 28076793]
Guidelines for the Treatment of malaria. Pharmacology of antimalarial drugs: amodiaquine. World Health Organization,( 3rd. Edition), 2015. Available at: ;
[http://dx.doi.org/apps.who.int/medicinedocs/documents/s21839en/s21839en.pdf (Accessed Date: 13th September, 2017)]
Gil, J.P. Amodiaquine pharmacogenetics. Pharmacogenomics, 2008, 9(10), 1385-1390.
[http://dx.doi.org/10.2217/14622416.9.10.1385] [PMID: 18855526]
World Malaria Report World Health Organization. 2016 Available at; http://apps.who.int/iris/bitstream/handle/10665/252038/9789241511711eng.pdf;jsessionid=859FA8FEA5D898728C37E56597CF6405?sequence=1 (Accessed Date: 11th September, 2017)
Khaliq, A.A.; Fox, E.; Sarwar, M.; Strickland, G.T. Amodiaquine fails to cure chloroquine resistant Plasmodium falciparum in the Punjab. Trans. R. Soc. Trop. Med. Hyg., 1987, 81(1), 157-159.
[http://dx.doi.org/10.1016/0035-9203(87)90311-7] [PMID: 3328330]
Kremsner, P.G.; Zotter, G.M.; Feldmeier, H.; Graninger, W.; Rocha, R.M.; Wiedermann, G. A comparative trial of three regimens for treating uncomplicated falciparum malaria in Acre, Brazil. J. Infect. Dis., 1988, 158(6), 1368-1371.
[http://dx.doi.org/10.1093/infdis/158.6.1368] [PMID: 3058821]
Mutabingwa, T.K.; Anthony, D.; Heller, A.; Hallett, R.; Ahmed, J.; Drakeley, C.; Greenwood, B.M.; Whitty, C.J. Amodiaquine alone, amodiaquine+sulfadoxine-pyrime-thamine, amodiaquine+artesunate, and artemether-lumefantrine for outpatient treatment of malaria in Tanzanian children: a four-arm randomised effectiveness trial. Lancet, 2005, 365(9469), 1474-1480.
[http://dx.doi.org/10.1016/S0140-6736(05)66417-3] [PMID: 15850631]
Salentin, S.; Adasme, M.F.; Heinrich, J.C.; Haupt, V.J.; Daminelli, S.; Zhang, Y.; Schroeder, M. From malaria to cancer: computational drug repositioning of amodiaquine using PLIP interaction patterns. Sci. Rep., 2017, 7(1), 11401.
[http://dx.doi.org/10.1038/s41598-017-11924-4] [PMID: 28900272]
McAnally, D.; Siddiquee, K.; Gomaa, A.; Szabo, A.; Vasile, S.; Maloney, P.R.; Divlianska, D.B.; Peddibhotla, S.; Morfa, C.J.; Hershberger, P.; Falter, R.; Williamson, R.; Terry, D.B.; Farjo, R.; Pinkerton, A.B.; Qi, X.; Quigley, J.; Boulton, M.E.; Grant, M.B.; Smith, L.H. Repurposing antimalarial aminoquinolines and related compounds for treatment of retinal neovascularization. PLoS One, 2018, 13(9), e0202436.
[http://dx.doi.org/10.1371/journal.pone.0202436] [PMID: 30208056]
Dong, J.; Li, S.; Mo, J.L.; Cai, H.B.; Le, W.D. Nurr1-based therapies for Parkinson’s disease. CNS Neurosci. Ther., 2016, 22(5), 351-359.
[http://dx.doi.org/10.1111/cns.12536] [PMID: 27012974]
Kim, C.H.; Han, B.S.; Moon, J.; Kim, D.J.; Shin, J.; Rajan, S.; Nguyen, Q.T.; Sohn, M.; Kim, W.G.; Han, M.; Jeong, I.; Kim, K.S.; Lee, E.H.; Tu, Y.; Naffin-Olivos, J.L.; Park, C.H.; Ringe, D.; Yoon, H.S.; Petsko, G.A.; Kim, K.S. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2015, 112(28), 8756-8761.
[http://dx.doi.org/10.1073/pnas.1509742112] [PMID: 26124091]
Campbell, W.C. The chemotherapy of parasitic infections. J. Parasitol., 1986, 72(1), 45-61.
[http://dx.doi.org/10.2307/3281795] [PMID: 3519918]
Lariam summary of products characteristics. Availabe at: https://www.medicines.org.uk/emc/product/1108/smpc (Accessed Date: 1st September, 2017)
Chevli, R.; Fitch, C.D. The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrob. Agents Chemother., 1982, 21(4), 581-586.
[http://dx.doi.org/10.1128/AAC.21.4.581] [PMID: 6979309]
Mockenhaupt, F.P. Mefloquine resistance in Plasmodium falciparum. Parasitol. Today, 1995, 11(7), 248-253.
ter Kuile, F.O.; Dolan, G.; Nosten, F.; Edstein, M.D.; Luxemburger, C.; Phaipun, L.; Chongsuphajaisiddhi, T.; Webster, H.K.; White, N.J. Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria. Lancet, 1993, 341(8852), 1044-1049.
[http://dx.doi.org/10.1016/0140-6736(93)92409-M] [PMID: 8096956]
Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; Nosten, F.; Krishna, S. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet, 2004, 364(9432), 438-447.
[http://dx.doi.org/10.1016/S0140-6736(04)16767-6] [PMID: 15288742]
Keiser, J.; Silué, K.D.; Adiossan, L.K.; N’Guessan, N.A.; Monsan, N.; Utzinger, J.; N’Goran, E.K. Praziquantel, mefloquine-praziquantel, and mefloquine-artesunate-prazi-quantel against Schistosoma haematobium: a randomized, exploratory, open-label trial. PLoS Negl. Trop. Dis., 2014, 8(7), e2975.
[http://dx.doi.org/10.1371/journal.pntd.0002975] [PMID: 25033291]
Xu, X.; Wang, J.; Han, K.; Li, S.; Xu, F.; Yang, Y. Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells. Cancer Sci., 2018, 109(4), 1220-1229.
[http://dx.doi.org/10.1111/cas.13540] [PMID: 29453896]
Basso, L.G.; Rodrigues, R.Z.; Naal, R.M.; Costa-Filho, A.J. Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. Biochim. Biophys. Acta, 2011, 1808(1), 55-64.
[http://dx.doi.org/10.1016/j.bbamem.2010.08.009] [PMID: 20713019]
Kitchakarn, S.; Lek, D.; Thol, S.; Hok, C.; Saejeng, A.; Huy, R.; Chinanonwait, N.; Thimasarn, K.; Wongsrichanalai, C. Implementation of G6PD testing and primaquine for P. vivax radical cure: operational perspectives from Thailand and Cambodia. WHO South-East Asia J. Public Health, 2017, 6(2), 60-68.
[http://dx.doi.org/10.4103/2224-3151.213793] [PMID: 28857064]
Al-Bari, M.A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother., 2015, 70(6), 1608-1621.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
Barrow, E.; Nicola, A.V.; Liu, J. Multiscale perspectives of virus entry via endocytosis. Virol. J., 2013, 10, 177.
[http://dx.doi.org/10.1186/1743-422X-10-177] [PMID: 23734580]
Choi, A.R.; Kim, J.H.; Woo, Y.H.; Kim, H.S.; Yoon, S. Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells. Anticancer Res., 2016, 36(4), 1641-1648.
[PMID: 27069141]
Davies, C.S.; Pudney, M.; Nicholas, J.C.; Sinden, R.E. The novel hydroxynaphthoquinone 566C80 inhibits the development of liver stages of Plasmodium berghei cultured in vitro. Parasitology, 1993, 106(Pt 1), 1-6.
[http://dx.doi.org/10.1017/S0031182000074746] [PMID: 8479795]
Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; Bockenstedt, L.; Fish, D.; Dumler, J.S.; Nadelman, R.B. The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin. Infect. Dis., 2006, 43(9), 1089-1134.
[http://dx.doi.org/10.1086/508667] [PMID: 17029130]
Dubin, M.; Fernandez Villamil, S.H.; Stoppani, A.O.M. Inhibition of microsomal lipid peroxidation and cytochrome P-450-catalyzed reactions by beta-lapachone and related naphthoquinones. Biochem. Pharmacol., 1990, 39(7), 1151-1160.
[http://dx.doi.org/10.1016/0006-2952(90)90256-K] [PMID: 2157443]
Vaidya, A.B.; Mather, M.W. Atovaquone resistance in malaria parasites. Drug Resist. Updat., 2000, 3(5), 283-287.
[http://dx.doi.org/10.1054/drup.2000.0157] [PMID: 11498396]
Savelkoel, J.; Binnendijk, K.H.; Spijker, R.; van Vugt, M.; Tan, K.; Hänscheid, T.; Schlagenhauf, P.; Grobusch, M.P. Abbreviated atovaquone-proguanil prophylaxis regimens in travellers after leaving malaria-endemic areas: a systematic review. Travel Med. Infect. Dis., 2018, 21, 3-20.
[http://dx.doi.org/10.1016/j.tmaid.2017.12.005] [PMID: 29242073]
Torres, R.A.; Weinberg, W.; Stansell, J.; Leoung, G.; Kovacs, J.; Rogers, M.; Scott, J. Atovaquone/toxoplasmic encephalitis study group. Atovaquone for salvage treatment and suppression of toxoplasmic encephalitis in patients with AIDS. Clin. Infect. Dis., 1997, 24(3), 422-429.
[http://dx.doi.org/10.1093/clinids/24.3.422] [PMID: 9114194]
Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. Available at:, https://aidsinfo. nih.gov/content-files/lvguidelines/adult_oi.pdf (Accessed Date: 5th November, 2017).
Summary of product characteristics of Malarone. Available at: https://www.medicines.org.uk/emc/product/947/smpc (Accessed Date: 29th September, 2017)
Fiorillo, M.; Lamb, R.; Tanowitz, H.B.; Mutti, L.; Krstic-Demonacos, M.; Cappello, A.R.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 2016, 7(23), 34084-34099.
[http://dx.doi.org/10.18632/oncotarget.9122] [PMID: 27136895]
Takabe, H.; Warnken, Z.N.; Zhang, Y.; Davis, D.A.; Smyth, H.D.C.; Kuhn, J.G.; Weitman, S.; Williams Iii, R.O. A repurposed drug for brain cancer: enhanced atovaquone amorphous solid dispersion by combining a spontaneously emulsifying component with a polymer carrier. Pharmaceutics, 2018, 10(2), 60.
[http://dx.doi.org/10.3390/pharmaceutics10020060] [PMID: 29783757]
Lv, Z.; Yan, X.; Lu, L.; Su, C.; He, Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J. Bioenerg. Biomembr., 2018, 50(4), 263-270.
[http://dx.doi.org/10.1007/s10863-018-9755-y] [PMID: 29687367]
Speer, B.S.; Shoemaker, N.B.; Salyers, A.A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev., 1992, 5(4), 387-399.
[http://dx.doi.org/10.1128/CMR.5.4.387] [PMID: 1423217]
Prapunwattana, P.; O’Sullivan, W.J.; Yuthavong, Y. Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol. Biochem. Parasitol., 1988, 27(2-3), 119-124.
[http://dx.doi.org/10.1016/0166-6851(88)90031-X] [PMID: 2830511]
Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in malaria. Malar. J., 2015, 14, 445.
[http://dx.doi.org/10.1186/s12936-015-0980-0] [PMID: 26555664]
Gaillard, T.; Briolant, S.; Madamet, M.; Pradines, B. The end of a dogma: the safety of doxycycline use in young children for malaria treatment. Malar. J., 2017, 16(1), 148-152.
[http://dx.doi.org/10.1186/s12936-017-1797-9] [PMID: 28407772]
Lalloo, D.G.; Shingadia, D.; Bell, D.J.; Beeching, N.J.; Whitty, C.J.M.; Chiodini, P.L. PHE advisory committee on malaria prevention in UK travellers. UK malaria treatment guidelines 2016. J. Infect., 2016, 72(6), 635-649.
[http://dx.doi.org/10.1016/j.jinf.2016.02.001] [PMID: 26880088]
Gupta, H.; Dhunputh, P.; Bhatt, A.N.; Satyamoorthy, K.; Umakanth, S. Cerebral malaria in a man with Plasmodium vivax mono-infection: a case report. Trop. Doct., 2016, 46(4), 241-245.
[http://dx.doi.org/10.1177/0049475515624857] [PMID: 26748392]
Rainey, P.M.; Santi, D.V. Drugs for the treatment of leishmaniasis, 1989.
Croft, S.L.; Brazil, R.P. Effect of pentamidine isethionate on the ultrastructure and morphology of Leishmania mexicana amazonensis in vitro. Ann. Trop. Med. Parasitol., 1982, 76(1), 37-43.
[http://dx.doi.org/10.1080/00034983.1982.11687502] [PMID: 7082077]
Summary of product characteristics for doxycycline. Available at: https://www.medicines.org.uk/emc/product/4063/ smpc (Accessed Date: 13th September, 2017)
González-Lizárraga, F.; Socías, S.B.; Ávila, C.L.; Torres-Bugeau, C.M.; Barbosa, L.R.; Binolfi, A.; Sepúlveda-Díaz, J.E.; Del-Bel, E.; Fernandez, C.O.; Papy-Garcia, D.; Itri, R.; Raisman-Vozari, R.; Chehín, R.N. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci. Rep., 2017, 7(7), 41755.
[http://dx.doi.org/10.1038/srep41755] [PMID: 28155912]
Zhang, L.; Xu, L.; Zhang, F.; Vlashi, E. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle, 2017, 16(8), 737-745.
[http://dx.doi.org/10.1080/15384101.2016.1241929] [PMID: 27753527]
Díaz, M.V.; Miranda, M.R.; Campos-Estrada, C.; Reigada, C.; Maya, J.D.; Pereira, C.A.; López-Muñoz, R. Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi. Acta Trop., 2014, 134, 1-9.
[http://dx.doi.org/10.1016/j.actatropica.2014.02.012] [PMID: 24560964]
Mehta, A.; Shaha, C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J. Biol. Chem., 2004, 279(12), 11798-11813.
[http://dx.doi.org/10.1074/jbc.M309341200] [PMID: 14679210]
Baker, N.; de Koning, H.P.; Mäser, P.; Horn, D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol., 2013, 29(3), 110-118.
[http://dx.doi.org/10.1016/j.pt.2012.12.005] [PMID: 23375541]
Zerbini, L.F.; Bhasin, M.K.; de Vasconcellos, J.F.; Paccez, J.D.; Gu, X.; Kung, A.L.; Libermann, T.A. Computational repositioning and preclinical validation of pentamidine for renal cell cancer. Mol. Cancer Ther., 2014, 13(7), 1929-1941.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0750] [PMID: 24785412]
Meshnick, S.R.; Tsang, T.W.; Lin, F.B.; Pan, H.Z.; Chang, C.N.; Kuypers, F.; Chiu, D.; Lubin, B. Activated oxygen mediates the antimalarial activity of qinghaosu. Prog. Clin. Biol. Res., 1989, 313, 95-104.
[PMID: 2675120]
Franco, J.; Scarone, L.; Comini, M.A. Drugs and drug resistance in African and American Trypanosomiasis. Annual reports in medicinal chemistry. Annu. Rep. Med. Chem., 2018, 51, 97-133.
Albulescu, I.C.; Kovacikova, K.; Tas, A.; Snijder, E.J.; van Hemert, M.J. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res., 2017, 143, 230-236.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.016] [PMID: 28461070]
Jeng-Wei, L.; Po-Shiuan, H.; Chang-Chi, L.; Ming-Kuan, H.; Shih-Ming, H.; Yu-Ming, W.; Chun-Yu, L.; Zhiyuan, G.; Yi-Jung, H. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem. Biophys. Res. Commun., 2017, 491(3), 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
Croft, S.L.; Coombs, G.H. Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol., 2003, 19(11), 502-508.
[http://dx.doi.org/10.1016/j.pt.2003.09.008] [PMID: 14580961]
Marr, J.J. Purine metabolism in parasitic protozoa and its relationship to chemotherapy in: Biochemical Protozoology; Coombs, G; North, M., Ed.; Taylor & Francis: London, 1991, pp. 524-536.
Manna, L.; Corso, R.; Galiero, G.; Cerrone, A.; Muzj, P.; Gravino, A.E. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasit. Vectors, 2015, 8(8), 289.
[http://dx.doi.org/10.1186/s13071-015-0896-0] [PMID: 26017164]
Yasur-Landau, D.; Jaffe, C.L.; Doron-Faigenboim, A.; David, L.; Baneth, G. Induction of allopurinol resistance in Leishmania infantum isolated from dogs. PLoS Negl. Trop. Dis., 2017, 11(9), e0005910.
[http://dx.doi.org/10.1371/journal.pntd.0005910] [PMID: 28892476]
Katare, P.B.; Banerjee, S.K. Repositioning of drugs in cardiometabolic disorders: importance and current scenario. Curr. Top. Med. Chem., 2016, 16(19), 2189-2200.
[http://dx.doi.org/10.2174/1568026616666160216152138] [PMID: 26881721]
Wendel, K.A.; Workowski, K.A. Trichomoniasis: challenges to appropriate management. Clin. Infects. Dis., 2007, 44, 123-129.
Upcroft, J.A.; Upcroft, P. Drug resistance and Giardia. Parasitol. Today, 1993, 9(5), 187-190.
Kumar, L.; Jain, A.; Lal, N.; Sarswat, A.; Jangir, S.; Kumar, L.; Singh, V.; Shah, P.; Jain, S.; Maikhuri, J.P.; Siddiqi, M.I.; Gupta, G.; Sharma, V.L. Potentiating metronidazole scaffold against resistant Trichomonas: design, synthesis, biology and 3D-QSAR analysis. ACS Med. Chem. Lett., 2011, 3(2), 83-87.
[http://dx.doi.org/10.1021/ml200161t] [PMID: 24900434]
Wassmann, C.; Hellberg, A.; Tannich, E.; Bruchhaus, I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J. Biol. Chem., 1999, 274(37), 26051-26056.
[http://dx.doi.org/10.1074/jbc.274.37.26051] [PMID: 10473552]
Gionchetti, P.; Calafiore, A.; Riso, D.; Liguori, G.; Calabrese, C.; Vitali, G.; Laureti, S.; Poggioli, G.; Campieri, M.; Rizzello, F. The role of antibiotics and probiotics in pouchitis. Ann. Gastroenterol., 2012, 25(2), 100-105.
[PMID: 24714229]
Bock, M.; Gönnert, R.; Haberkorn, A. Studies with Bay 2502 on animals. Bol. Chil. Parasitol., 1969, 24(1), 13-19.
[PMID: 4983545]
Richle, R. Chemotherapy of experimental acute Chagas disease in mice: beneficial effect of Ro-71051 on parasitemia and tissue parasitism. Prog. Med. (Paris), 1973, 101, 282.
Coura, J.R.; Castro, S.L. A critical review on chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz, Rio de Janeiro., 2002, 97(1), 3-24.
[http://dx.doi.org/10.1590/s0074-02762002000100001] [PMID: 11992141]
Murta, S.M.F.; Krieger, M.A.; Montenegro, L.R.; Campos, F.F.M.; Probst, C.M.; Avila, A.R.; Muto, N.H.; de Oliveira, R.C.; Nunes, L.R.; Nirdé, P.; Bruna-Romero, O.; Goldenberg, S.; Romanha, A.J. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Mol. Biochem. Parasitol., 2006, 146(2), 151-162.
[http://dx.doi.org/10.1016/j.molbiopara.2005.12.001] [PMID: 16442642]
Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25(8), 471-479.
[http://dx.doi.org/10.1191/0960327106het653oa] [PMID: 16937919]
Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.; Meymandi, S.K. Safety profile of Nifurtimox for treatment of chagas disease in the United States. Clin. Infect. Dis., 2016, 63(8), 1056-1062.
[http://dx.doi.org/10.1093/cid/ciw477] [PMID: 27432838]
Pinazo, M.J.; Guerrero, L.; Posada, E.; Rodríguez, E.; Soy, D.; Gascon, J. Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob. Agents Chemother., 2013, 57(1), 390-395.
[http://dx.doi.org/10.1128/AAC.01401-12] [PMID: 23114763]
Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027.
[http://dx.doi.org/10.1073/pnas.0711014105] [PMID: 18367671]
Li, Q.; Lin, Q.; Kim, H.; Yun, Z. The anti-protozoan drug nifurtimox preferentially inhibits clonogenic tumor cells under hypoxic conditions. Am. J. Cancer Res., 2017, 7(5), 1084-1095.
[PMID: 28560059]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 24 September, 2020
Page: [5403 - 5428]
Pages: 26
DOI: 10.2174/0929867326666190628163633
Price: $65

Article Metrics

PDF: 44