Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Comparison of the Effects of Silver in Nanostructured and Ultrahigh Diluted Form on Growth and Volatile Compounds Produced by Escherichia coli and Staphylococcus aureus

Author(s): Fateme Mirzajani* and Amin Hamidi

Volume 10, Issue 3, 2020

Page: [316 - 329] Pages: 14

DOI: 10.2174/2210681209666190627161850

Price: $65

Abstract

Background: In this project, the growth and volatile metabolites profiles of Escherichia coli (E. coli ) and Staphylococcus aureus were monitored under the influence of silver base chemical, nanoparticle and ultra-highly diluted compounds.

Materials and Methods: The treatments were done for 12000 life cycles using silver nanoparticles (AgNPs) as well as ultra-highly diluted Argentum nitricum (Arg-n). Volatile organic metabolites analysis was performed using gas chromatography mass spectrometry (GC-MS). The results indicated that AgNPs treatment made the bacteria resistant and adapted to growth in the nanoparticle condition. The use of ultra-highly diluted Arg-n initially increased growth but it decreased later. Also, with the continuous usage of these materials, no more bacterial growth was observed.

Results: The most important compounds produced by E. coli are Acetophenone, Octyl acetate, Styrene, 1,8-cineole, 4-t-butyl-2-(1-methyl-2-nitroethyl)cyclohexane, hexadecane and 2-Undecanol. The main compounds derived from S. aureus are Acetophenone,1,8-cineole, Benzaldehyde, 2-Hexan-1-ol, Tridecanol, Dimethyl Octenal and tetradecane. Acetophenone and 1,8-cineole were common and produced by both organisms.

Conclusion: Based on the origin of the produced volatiles, main volatiles percentage of untreated sample is hydrocarbon (>50%), while bacteria treatments convert the ratio in to aldehydes, ketones and alcohols in the case of AgNPs, (>80%) and aldehydes, ketones and terpenes in the case of Arg-n (>70%).

Keywords: Ultra-high diluted compound, silver nanoparticle, Staphylococcus aureus, Escherichia coli, volatile metabolite, gas chromatography.

Graphical Abstract
[1]
Khuda-Bukhsh, A.R. Current trends in high dilution research with particular reference to gene regulatory hypothesis. Nucleus, 2014, 57(1), 3-17.
[http://dx.doi.org/10.1007/s13237-014-0105-0] [PMID: 24637401]
[2]
(a) Aversa, R.; Petrescu, R.V.V.; Apicella, A.; Petrescu, F.I.T. A method for pet mechanical properties enhancement. Am. J. Eng. Appl. Sci., 2016, 9(4), 1164-1172.
[http://dx.doi.org/10.3844/ajeassp.2016.1164.1172]
(b) Michalsen, A.; Uehleke, B.; Stange, R. Safety and compliance of a complex homeopathic drug (Contramutan N Saft) in the treatment of acute respiratory tract infections: A large observational (non-interventional) study in children and adults focussing on homeopathy specific adverse reactions versus adverse drug reactions. Regul. Toxicol. Pharmacol., 2015, 72(2), 179-184.
[http://dx.doi.org/10.1016/j.yrtph.2015.04.002] [PMID: 25882307]
(c) Ernest, E. Homeopathy: Past present and future. J. Clin. Pharmacol., 1997, 44, 435-437.
[http://dx.doi.org/10.1046/j.1365-2125.1997.t01-1-00611.x]
[3]
(a) Khuda-Bukhsh, A.R. Laboratory research in homeopathy: Pro. Integr. Cancer Ther., 2006, 5(4), 320-332.
[http://dx.doi.org/10.1177/1534735406294794] [PMID: 17101761]
(b) Trebbi, G.; Nipoti, P.; Bregola, V.; Brizzi, M.; Dinelli, G.; Betti, L. Ultra high diluted arsenic reduces spore germination of Alternaria brassicicola and dark leaf spot in cauliflower. Hortic. Bras., 2016, 34(3), 318-325.
[http://dx.doi.org/10.1590/S0102-05362016003003]
(c) Canizares, M.; Hogg-Johnson, S.; Gignac, M.A.M.; Glazier, R.H.; Badley, E.M.; Badley, E.M. Changes in the use practitionerbased complementary and alternative medicine over time in Canada: Cohort and period effects. PLoS One, 2017, 12(5) e0177307
[http://dx.doi.org/10.1371/journal.pone.0177307] [PMID: 28494011]
(d) Mohd Mujar, N.M.; Dahlui, M.; Emran, N.A.; Abdul Hadi, I.; Wai, Y.Y.; Arulanantham, S.; Hooi, C.C.; Mohd Taib, N.A. Complementary and alternative medicine (CAM) use and delays in presentation and diagnosis of breast cancer patients in public hospitals in Malaysia. PLoS One, 2017, 12(4) e0176394
[http://dx.doi.org/10.1371/journal.pone.0176394] [PMID: 28448541]
(e) Arora, S.; Aggarwal, A.; Singla, P.; Jyoti, S.; Tandon, S. Anti-proliferative effects of homeopathic medicines on human kidney, colon and breast cancer cells. Homeopathy, 2013, 102(4), 274-282.
[http://dx.doi.org/10.1016/j.homp.2013.06.001] [PMID: 24050774]
(f) Endler, P.C.; Scherer-Pongratz, W.; Lothaller, H.; Stephen, S. Wheat and ultra high diluted gibberellic acid--further experiments and re-analysis of data. Homeopathy, 2015, 104(4), 257-262.
[http://dx.doi.org/10.1016/j.homp.2015.09.007] [PMID: 26678726]
(g) Scherer-Pongratz, W.; Endler, P.C.; Lothaller, H.; Stephen, S. Wheat and ultra high diluted silver nitrate--further experiments and re-analysis of data. Homeopathy, 2015, 104(4), 246-249.
[http://dx.doi.org/10.1016/j.homp.2015.09.009] [PMID: 26678724]
[4]
Pizzoccaro, A. The Symptom as ally, not enemy. World Futures, 2016, 72(3-4), 133-137.
[http://dx.doi.org/10.1080/02604027.2016.1194107]
[5]
Huang, Y.; Zhang, X.; Ma, Z.; Zhou, Y.; Zheng, W.; Zhou, J.; Sun, C.Q. Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coord. Chem. Rev., 2015, 285, 109-165.
[http://dx.doi.org/10.1016/j.ccr.2014.10.003]
[6]
(a) Kidd, R.; Walker, S. Antibiotics in development for the treatment of resistant bacterial disease. Hosp. Pharm., 2018, 53(1), 38-40.
[http://dx.doi.org/10.1177/0018578717741393] [PMID: 29434385]
(b) Kravchenko-Balasha, N.; Aframian, D.J. A novel strategy for diagnosing viral vs bacterial infection: implications for oral diseases. Oral Dis., 2018, 24(4), 491-493.
[http://dx.doi.org/10.1111/odi.12629] [PMID: 28029726]
(c) dos Santos Trindade, R.; Rodrigues, R.; do Amaral Júnior, A.T.; Gonçalves, L.S.A.; Daher, R.F.; Sudré, C.P. Critical disease components of common bacterial blight to effectively evaluate resistant genotypes of snap bean. J. Gen. Plant Pathol., 2012, 78(3), 201-206.
[http://dx.doi.org/10.1007/s10327-012-0374-x]
[7]
Mirzajani, F.; Ghassempour, A.; Aliahmadi, A.; Esmaeili, M.A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol., 2011, 162(5), 542-549.
[http://dx.doi.org/10.1016/j.resmic.2011.04.009] [PMID: 21530652]
[8]
Khan, M.E.; Khan, M.M.; Cho, M.H. Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J. Chem., 2015, 39(10), 8121-8129.
[http://dx.doi.org/10.1039/C5NJ01320H]
[9]
Khan, M.E.; Han, T.H.; Khan, M.M.; Karim, M.R.; Cho, M.H. Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl. Nano Mater, 2018, 1(6), 2912-2922.
[http://dx.doi.org/10.1021/acsanm.8b00548]
[10]
(a) Mirzajani, F. Are biological potency and features of colloidal silver nanoparticles applied in different culturing media comparable? J. Bionanosci, 2016, 10(3), 241-245.
[http://dx.doi.org/10.1166/jbns.2016.1349]
(b) Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf., 2013, 88, 48-54.
[http://dx.doi.org/10.1016/j.ecoenv.2012.10.018] [PMID: 23174269]
(c) Mirzajani, F.; Askari, H.; Hamzelou, S.; Schober, Y.; Römpp, A.; Ghassempour, A.; Spengler, B. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis. Ecotoxicol. Environ. Saf., 2014, 100, 122-130.
[http://dx.doi.org/10.1016/j.ecoenv.2013.10.009] [PMID: 24290895]
(d) Mirzajani, F.; Askari, H.; Hamzelou, S.; Schober, Y.; Römpp, A.; Ghassempour, A.; Spengler, B. Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol. Environ. Saf., 2014, 108, 335-339.
[http://dx.doi.org/10.1016/j.ecoenv.2014.07.013] [PMID: 25124680]
[11]
Khan, M.E.; Khan, M.M.; Cho, M.H. Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Advances, 2015, 5(34), 26897-26904.
[http://dx.doi.org/10.1039/C5RA01864A]
[12]
Ian, J.; Morgan, R.P.H.; Chris, M. Wood, The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl- transport. Aquat. Toxicol., 1997, 38, 145-163.
[http://dx.doi.org/10.1016/S0166-445X(96)00835-1]
[13]
Kaweeteerawat, C.; Na Ubol, P.; Sangmuang, S.; Aueviriyavit, S.; Maniratanachote, R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health A, 2017, 80(23-24), 1276-1289.
[http://dx.doi.org/10.1080/15287394.2017.1376727] [PMID: 29020531]
[14]
Zhang, Y.J.; Li, S.; Gan, R.Y.; Zhou, T.; Xu, D.P.; Li, H.B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci., 2015, 16(4), 7493-7519.
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[15]
Tahir, H.A.S.; Gu, Q.; Wu, H.; Raza, W.; Safdar, A.; Huang, Z.; Rajer, F.U.; Gao, X. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol., 2017, 17(1), 133.
[http://dx.doi.org/10.1186/s12870-017-1083-6] [PMID: 28768498]
[16]
(a) Karami, N.; Karimi, A.; Aliahmadi, A.; Mirzajan, F.; Rezadoost, H.; Ghassempour, A.; Fallah, F. Identification of bacteria using volatile organic compounds. Cell. Mol. Biol., 2017, 63(2), 112-121.
[http://dx.doi.org/10.14715/cmb/2017.63.2.18] [PMID: 28364792]
(b) Karami, N.; Mirzajani, F.; Rezadoost, H.; Karimi, A.; Fallah, F.; Ghassempour, A.; Aliahmadi, A. Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry. F1000 Res., 2017, 6, 1415.
[http://dx.doi.org/10.12688/f1000research.12003.2] [PMID: 29375811]
[17]
(a) Magdolenova, Z.; Collins, A.; Kumar, A.; Dhawan, A.; Stone, V.; Dusinska, M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 2014, 8(3), 233-278.
[http://dx.doi.org/10.3109/17435390.2013.773464] [PMID: 23379603]
(b) Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 2015, 30(4), 577-591.
[http://dx.doi.org/10.1093/mutage/gev020] [PMID: 25964273]
[18]
Dunn, P.M. Dr Carl Credé (1819-1892) and the prevention of ophthalmia neonatorum. Arch. Dis. Child. Fetal Neonatal Ed., 2000, 83(2), F158-F159.
[http://dx.doi.org/10.1136/fn.83.2.F158] [PMID: 10952715]
[19]
Naddy, R.B.; Gorsuch, J.W.; Rehner, A.B.; McNerney, G.R.; Bell, R.A.; Kramer, J.R. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors. Aquat. Toxicol., 2007, 84(1), 1-10.
[http://dx.doi.org/10.1016/j.aquatox.2007.03.022] [PMID: 17658626]
[20]
(a) George, C.; Kuriakose, S.; Prakashkumar, B.; Mathew, T. Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle-encapsulated β-cyclodextrin. Supramol. Chem., 2010, 22(9), 511-516.
[http://dx.doi.org/10.1080/10610278.2010.487565]
(b) Tolaymat, T.M.; El Badawy, A.M.; Genaidy, A.; Scheckel, K.G.; Luxton, T.P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ., 2010, 408(5), 999-1006.
[http://dx.doi.org/10.1016/j.scitotenv.2009.11.003] [PMID: 19945151]
[21]
(a) Zhao, Y.Y.; Chu, Q.; Shi, X.E.; Zheng, X.D.; Shen, X.T.; Zhang, Y.Z. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures. J. Zhejiang Univ. Sci. B, 2018, 19(2), 159-167.
[http://dx.doi.org/10.1631/jzus.B1600482] [PMID: 29405043]
(b) Zhao, C-M.; Wang, W-X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol. Chem., 2011, 30(4), 885-892.
[http://dx.doi.org/10.1002/etc.451] [PMID: 21191880]
(c) Mao, B-H.; Tsai, J-C.; Chen, C-W.; Yan, S-J.; Wang, Y-J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 2016, 10(8), 1021-1040.
[http://dx.doi.org/10.1080/17435390.2016.1189614] [PMID: 27240148]
[22]
(a) Naddy, R.B.; McNerney, G.R.; Gorsuch, J.W.; Bell, R.A.; Kramer, J.R.; Wu, K.B.; Paquin, P.R. The effect of food on the acute toxicity of silver nitrate to four freshwater test species and acute-to-chronic ratios. Ecotoxicology, 2011, 20(8), 2019-2029.
[http://dx.doi.org/10.1007/s10646-011-0745-7] [PMID: 21779820]
(b) Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S.T. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology, 2015, 13(1), 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
(c) Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem., 2016, 107, 147-163.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.022] [PMID: 27288991]
(d) Tripathi, D.K.; Tripathi, A. Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; Upadhyay, R.G.; Dubey, N.K.; Lee, Y.; Chauhan, D.K. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol., 2017, 08, 7.https://www.ncbi.nlm.nih.gov/pubmed/28184215
[23]
Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci., 2018, 19(2), 444.
[http://dx.doi.org/10.3390/ijms 19020444] [PMID: 29393866]
[24]
Nilsson, A.; Pettersson, L.G.M. Perspective on the structure of liquid water. Chem. Phys., 2011, 389(1-3), 1-34.
[http://dx.doi.org/10.1016/j.chemphys.2011.07.021]
[25]
Chaplin, M.F. The memory of water: An overview. Homeopathy, 2007, 96(3), 143-150.
[http://dx.doi.org/10.1016/j.homp. 2007.05.006] [PMID: 17678809]
[26]
Khuda-Bukhsh, A.R. Towards understanding molecular mechanisms of action of homeopathic drugs: An overview. Mol. Cell. Biochem., 2003, 253(1-2), 339-345.
[http://dx.doi.org/10.1023/A: 1026048907739] [PMID: 14619985]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy