Investigations on Optical, Material and Electrical Properties of aSi:H and aSiGe:H in Making Proposed n+aSi:H/i-aSi:H/p+aSiGe:H Graded Bandgap Single-junction Solar Cell

Author(s): Fatima Rasheed J.*, V. Suresh Babu

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: This work identifies materials that satisfy refractive index, optical band gap, composition profile, conductivity, hall mobility, carrier type and carrier concentration to utilize them in making thin film photovoltaic cells.

Methods: We fabricated phosphorous doped amorphous silicon (n+ aSi:H), boron doped amorphous silicon germanium(p+ aSiGe:H) and intrinsic amorphous silicon (i-aSi:H). A detailed and systematic characterization of the fabricated layers was done. The phosphorous doped amorphous silicon (n+ aSi:H) showed an optical band gap of 1.842 eV and an electron mobility of 295.45 cm2V-1s-1. The boron doped amorphous silicon germanium (p+ aSiGe:H) exhibited an optical band gap of 1.74 eV and a hole mobility of 158.353 cm2V-1s-1. The intrinsic amorphous silicon (i-aSi:H) has an optical band gap of 1.801 eV. The films of n+ aSi:H, i-aSi:H and p+ aSiGe:H can be utilized for fabricating graded band gap single junction thin film solar cells, as they are semiconducting materials with varying band gaps in the range of 1.74 eV to 1.84 eV. The tailoring of band gap achieved by the proposed material combination has been presented using its energy band diagram.

Results: In this work, we are proposing a single junction graded band gap solar cell with aSi:H and aSi- Ge:H alloys of varying doping to achieve grading of band gap, which improves the efficiency while keeping the cell compact and light.

Conclusion: As a first step in the validation, we have simulated a thin film solar cell using SCAPS1D simulation software with the measured parameters for each of the layers and found that it successfully performs as solar cell with an efficiency of 14.5%.

Keywords: Amorphous silicon alloys, PECVD, graded band gap, SCAPS1D, photovoltaic cells, cadmium.

[1]
Meier, J.; Spitznagel, J.; Kroll, U.; Bucher, C.; Fay, S.; Moriarty, T.; Shah, A. Potential of amorphous and microcystalline silicon solar cells. Thin Solid Films, 2004, 451, 518-524.
[http://dx.doi.org/10.1016/j.tsf.2003.11.014]
[2]
Arai, Y.; Ishii, M.; Shinohara, H.; Yamazaki, S. A single pin junction amorphous-silicon solar cell with conversion efficiency of 12.65%. IEEE Electron Device Lett., 1991, 12(8), 460-461.
[http://dx.doi.org/10.1109/55.119165]
[3]
Dharmadasa, I.; Chaure, N.; Tolan, G.; Samantilleke, A. Development of p+, p, i, n, and n+type cuingase2 layers for applications in graded bandgap multilayer thin- film solar cells. J. Electrochem. Soc., 2007, 154(6), H466-H471.
[http://dx.doi.org/10.1149/1.2718401]
[4]
Jenny, D.A.; Bube, R.H. Semiconducting cadmium telluride. Phys. Rev., 1954, 96(5), 1190.
[http://dx.doi.org/10.1103/PhysRev.96.1190]
[5]
Bube, R. Photoconductivity of the sulfide, selenide, and telluride of zinc or cadmium. Proc. IRE, 1955, pp. 1836-1850.
[6]
Cusano, D. Cdte solar cells and photovoltaic heterojunctions in ii-vi compounds. Solid-State Electron., 1963, 6(3), 217-232.
[http://dx.doi.org/10.1016/0038-1101(63)90078-9]
[7]
Goldstein, B. Properties of photovoltaic films of cdte. Phys. Rev., 1958, 109(2), 601.
[http://dx.doi.org/10.1103/PhysRev.109.601.2]
[8]
Vodakov, Y.A.; Lomakina, G.; Naumov, G.; Maslakovets, Y.P. A pn junction photocell made of cadmium telluride. Soviet Phys. Solid State, 1960, 2(1), 1-4.
[9]
Dhere, N.G. Toward gw/year of cigs production within the next decade. Sol. Energy Mater. Sol. Cells, 2007, 91(15-16), 1376-1382.
[http://dx.doi.org/10.1016/j.solmat.2007.04.003]
[10]
Yunus, N.A.M.; Aman, N.H.N.; Khoshsirat, N. Comparison between thin- film solar cells and copper- indium-gallium-diselenide in Southeast Asia. IET Renew. Power Gener., 2015, 9(8), 1079-1086.
[http://dx.doi.org/10.1049/iet-rpg.2015.0114]
[11]
Carlson, D.E.; Wronski, C.R. Amorphous silicon solar cell. Appl. Phys. Lett., 1976, 28(11), 671-673.
[http://dx.doi.org/10.1063/1.88617]
[12]
Shah, A.; Schade, H.; Vanecek, M.; Meier, J.E. VallatSauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin- film silicon solar cell technology. Prog. Photovolt. Res. Appl., 2004, 12(2-3), 113-142.
[http://dx.doi.org/10.1002/pip.533]
[13]
Gupta, N.; Alapatt, G.; Podila, R.; Singh, R.; Poole, K. Prospects of nanostructure-based so-lar cells for manufacturing future generations of photovoltaic modules. Int. J. Photoenergy, 2009, 2009154059
[http://dx.doi.org/10.1155/2009/154059]
[14]
Werner, J.H.; Zapf-Gottwick, R.; Koch, M.; Fischer, K. Toxic substances in photovoltaic modules. Proceedings of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, JapanNovember 28th to December 2nd, 2011
[15]
Candelise, C.; Winskel, M.; Gross, R. Implications for cdte and cigs technologies production costs of indium and tellurium scarcity. Prog. Photovolt. Res. Appl., 2012, 20(6), 816-831.
[http://dx.doi.org/10.1002/pip.2216]
[16]
Chopra, K.; Paulson, P.; Dutta, V. Thin- film solar cells: An overview. Prog. Photovolt. Res. Appl., 2004, 12(2-3), 69-92.
[http://dx.doi.org/10.1002/pip.541]
[17]
Mller, J.; Rech, B.; Springer, J.; Vanecek, M. Tco and light trapping in silicon thin film solar cells. Sol. Energy, 2004, 77(6), 917-930.
[http://dx.doi.org/10.1016/j.solener.2004.03.015]
[18]
Deng, X.; Liao, X.; Han, S.; Povolny, H.; Agarwal, P. Amorphous silicon and silicon ger-manium materials for high-efficiency triple-junction solar cells. Sol. Energy Mater. Sol. Cells, 2000, 62(1-2), 89-95.
[http://dx.doi.org/10.1016/S0927-0248(99)00139-7]
[19]
Multone, X.; Fesquet, L.; Borrello, D.; Romang, D.; Choong, G.; Vallat-Sauvain, E.; Charrire, M.; Billet, A.; Boucher, J-F.; Steinhauser, J. Triplejunction amor-phous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology. Sol. Energy Mater. Sol. Cells, 2015, 140, 388-395.
[20]
Matsui, T.; Bidiville, A.; Maejima, K.; Sai, H.; Koida, T.; Suezaki, T.; Matsumoto, M.; Saito, K.; Yoshida, I.; Kondo, M. High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Appl. Phys. Lett., 2015, 106(5)053901
[http://dx.doi.org/10.1063/1.4907001]
[21]
Echendu, O.K.; Dharmadasa, I.M. Graded-bandgap solar cells using all-electrodeposited zns, cds and cdte thin- films. Energies, 2015, 8(5), 4416-4435.
[http://dx.doi.org/10.3390/en8054416]
[22]
Schttauf, J-W.; Niesen, B.; Lfgren, L. Amorphous silicon-germanium for triple and quadruple junction thin- film silicon based solar cells. Sol. Energy Mater. Sol. Cells, 2015, 133, 163-169.
[http://dx.doi.org/10.1016/j.solmat.2014.11.006]
[23]
Yang, J.; Banerjee, A.; Guha, S. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett., 1997, 70(22), 2975-2977.
[http://dx.doi.org/10.1063/1.118761]
[24]
Fan, Q.H.; Chen, C.; Liao, X.; Xiang, X.; Zhang, S.; Ingler, W.; Adiga, N.; Hu, Z.; Cao, X.; Du, W. High efficiency silicon-germanium thin film solar cells using graded absorber layer. Sol. Energy Mater. Sol. Cells, 2010, 94(7), 1300-1302.
[http://dx.doi.org/10.1016/j.solmat.2010.03.006]
[25]
Sai, H.; Matsui, T.; Koida, T.; Matsubara, K.; Kondo, M.; Sugiyama, S.; Katayama, H.; Takeuchi, Y.; Yoshida, I. Triple-junction thin- film silicon solar cell fabricated on periodically tex-tured substrate with a stabilized efficiency of 13.6%. Appl. Phys. Lett., 2015, 106(21)213902
[http://dx.doi.org/10.1063/1.4921794]
[26]
Bush, K.A.; Palmstrom, A.F.; Zhengshan, J.Y.; Boccard, M.; Cheacharoen, R.; Mailoa, J.P.; McMeekin, D.P.; Hoye, R.L.; Bailie, C.D.; Leijtens, T. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy, 2017, 2(4), 17009.
[http://dx.doi.org/10.1038/nenergy.2017.9]
[27]
Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. E ciency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells, 2006, 90(18-19), 2952-2959.
[http://dx.doi.org/10.1016/j.solmat.2006.06.002]
[28]
Nawaz, M. Computer analysis of thin- film amorphous silicon heterojunction solar cells. J. Phys. D Appl. Phys., 2011, 44(14)145105
[http://dx.doi.org/10.1088/0022-3727/44/14/145105]
[29]
Si, F.T.; Isabella, O.; Zeman, M. Thin- film amorphous silicon germanium solar cells with p-and n-type hydrogenated silicon oxide layers. Sol. Energy Mater. Sol. Cells, 2017, 163, 9-14.
[http://dx.doi.org/10.1016/j.solmat.2017.01.001]
[30]
Wang, G.; Shi, C.; Zhao, L.; Diao, H.; Wang, W. Fabrication of amorphous silicon-germanium thin film solar cell toward broadening long wavelength response. J. Alloys Compd., 2016, 658, 543-547.
[http://dx.doi.org/10.1016/j.jallcom.2015.10.235]
[31]
Krajangsang, T.; Inthisang, S.; Dousse, A.; Moollakorn, A.; Hongsingthong, A.; Kittison-tirak, S.; Chinnavornrungsee, P.; Limmanee, A.; Sritharathikhun, J.; Sriprapha, K. Band gap pro les of intrinsic amorphous silicon germanium lms and their application to amorphous silicon germanium heterojunction solar cells. Opt. Mater., 2016, 51, 245-249.
[http://dx.doi.org/10.1016/j.optmat.2015.11.012]
[32]
Son, W.H.; Lee, S.K.; Moon, Y.S.; Lee, T.Y.; Choi, S.Y. Characteristics of amorphous silicon thin- film solar cells of a-si: H/a-sige: H superlattices in different thickness for barrier and well layers. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2013, 586(1), 61-68.
[http://dx.doi.org/10.1080/15421406.2013.851502]
[33]
Lattyak, C.; Ravekes, R-E.; Steenho, V.; Vehse, M.; Agert, C. Ultrathin resonant-cavity-enhanced amorphous germanium solar cells on zno honeycomb electrodes. IEEE J. Photovoltaics, 2018, 8(1), 3-7.
[http://dx.doi.org/10.1109/JPHOTOV.2017.2762527]
[34]
Chen, Y-H.; Fang, H-Y.; Yeh, C-M. Raman scattering and electrical characterizations studies of hydrogenated amorphous silicon-germanium alloys prepared by 40 mhz plasma-enhanced cvd. J. Non-Cryst. Solids, 2011, 357(1), 1-3.
[http://dx.doi.org/10.1016/j.jnoncrysol.2010.09.060]
[35]
Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Modeling thin- film pv devices. Prog. Photovolt. Res. Appl., 2004, 12(2-3), 143-153.
[http://dx.doi.org/10.1002/pip.524]
[36]
Burgelman, M.; Marlein, J. Analysis of graded band gap solar cells with scaps. Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain2008.
[37]
Ambrosio, R.; Moreno, M.; Torres, A.; Carrillo, A.; Vivaldo, I.; Cosme, I.; Heredia, A. De-position and characterization of amorphous silicon with embedded nanocrystals and micro-crystalline silicon for thin film solar cells. J. Alloys Compd., 2015, 643, S27-S32.
[http://dx.doi.org/10.1016/j.jallcom.2014.11.105]
[38]
Plasma enhanced chemical vapor deposition of amorphous, polymor-phous and microcrystalline silicon films. J. Non-Cryst. Solids, 2000, 266, 31-37.
[39]
Hishikawa, Y.; Nakamura, N.; Tsuda, S.; Nakano, S.; Kishi, Y.; Kuwano, Y. Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films. Jpn. J. Appl. Phys., 1991, 30(5R), 1008.
[40]
Robertson, J. Deposition mechanism of hydrogenated amorphous silicon. J. Appl. Phys., 2000, 87(5), 2608-2617.
[http://dx.doi.org/10.1063/1.372226]
[41]
Crose, M.; Kwon, J.S-I.; Tran, A.P.D. Christo des, Multiscale modeling and run-to-run control of pecvd of thin film solar cells. Renew. Energy, 2017, 100, 129-140.
[http://dx.doi.org/10.1016/j.renene.2016.06.065]
[42]
Ayoub, G.; Bashara, N. Characterization of a very thin uniaxial film on a nonabsorbing substrate by multiple wavelength ellipsometry: Palmitic acid on water. JOSA, 1978, 68(7), 978-983.
[http://dx.doi.org/10.1364/JOSA.68.000978]
[43]
Azzam, R.; Bashara, N. Ellipsometry and polarized light north; J.A. Woollam Co.: USA, 1977.
[44]
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 1968, 3(1), 137-146.
[http://dx.doi.org/10.1016/0025-5408(68)90023-8]
[45]
Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 1966, 15(2), 627-637.
[46]
Gans, P. Vibrating molecules: An introduction to the interpretation of infrared and Raman spectra; CRC Press: Cleveland, USA, 1971.
[47]
Coates, J.P. The interpretation of infrared spectra: Published reference sources. Appl. Spectrosc. Rev., 1996, 31(1-2), 179-192.
[http://dx.doi.org/10.1080/05704929608000568]
[48]
Hollas, J.M. Modern spectroscopy; John Wiley & Sons: New Jersy, USA, 2004.
[49]
Russ, J.C. Fundamentals of energy dispersive X-ray analysis: Butterworths monographs in materials; Butterworth-Heinemann: Oxford, UK, 2013.
[50]
Brodsky, M.; Cardona, M.; Cuomo, J. Infrared and raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B, 1977, 16(8), 3556.
[http://dx.doi.org/10.1103/PhysRevB.16.3556]
[51]
Bragg, W. The investigation of the properties of thin films by means of X-rays. Nature, 1925, 115, 266-269.
[52]
Smith, K.; Oatley, C. The scanning electron microscope and its fields of application. Br. J. Appl. Phys., 1955, 6(11), 391.
[http://dx.doi.org/10.1088/0508-3443/6/11/304]
[53]
van der PAUWA L.J. method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Semicond. Devices, 1991, 1, 174-182.
[54]
Mostefaoui, M.; Mazari, H.; Kheli, S.; Bouraiou, A.; Dabou, R. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia, 2015, 74, 736-744.
[http://dx.doi.org/10.1016/j.egypro.2015.07.809]
[55]
Olopade, M.A.; Oyebola, O.O.; Adeleke, B.S. Investigation of some materials as buffer layer in copper zinc tin sulphide (Cu2ZnSnS4) solar cells by SCAPS-1D. Adv. Appl. Sci. Res., 2012, 3(6), 3396-3400.
[56]
Kabir, M.I.; Shahahmadi, S.A.; Lim, V.; Zaidi, S.; Sopian, K.; Amin, N. Amorphous silicon singlejunction thin- film solar cell exceeding 10% efficiency by design optimization. Int. J. Photoenergy, 2012, 2012460919
[http://dx.doi.org/10.1155/2012/460919]
[57]
Qarony, W.; Hossain, M.I.; Hossain, M.K.; Uddin, M.J.; Haque, A.; Saad, A.; Tsang, Y.H. Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys., 2017, 7, 4287-4293.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 5
Year: 2020
Published on: 27 June, 2019
Page: [709 - 718]
Pages: 10
DOI: 10.2174/2210681209666190627152852
Price: $25

Article Metrics

PDF: 8
HTML: 1