Nonvolatile Resistive Switching of Mn3O4 Thin Films for Flexible Electronics Applications

Author(s): C.S. Dash, A. Sivasubramanian, S.R.S. Prabaharan*

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 10 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: We report here our success in developing a flexible RRAM stack structure by employing a low-cost method. Bare conductive commercial electric paint is used as anode against Stainless Steel (SS) foil deposited with Mn3O4 thin films forming a BCEP/Mn3O4/SS thin film stack to understand the intrinsic non-volatile resistive switching behavior of Mn3O4.

Experimental: Thin film Mn3O4 is deposited on a SS (304) foil by means of potential sweep voltammetry by maintaining typical conditions. Interestingly, the pristine device is subjected to an electroforming process which exhibited a digital type bipolar resistive switching characteristics. The study of the conduction mechanism revealed that the resistive switching arises due to local effect occurring in the bulk of Mn3O4, which corresponds to the growth and annihilation of oxygen vacancy nanofilaments, and this is responsible for the change in resistance state of the RRAM between Low Resistance State (LRS) and High Resistance State (HRS) respectively.

Results: In order to affirm the reliability and reproducibility of RRAM structure, the memory retention is monitored over 103 s and subsequently, the endurance test is also carried out ensuring the reproducibility over 100 cycles.

Conclusion: Owing to the flexible nature of BCEP/Mn3O4/SS Foil RRAM stack structure, it is perceived to be a prime candidate for future non-volatile memory and flexible electronics applications.

Keywords: Resistive switching, transition metal oxides (TMO), filamentary conduction, electrodeposition, flexible electronics, Low Resistance State (LRS), High Resistance State (HRS).

[1]
ITRS. International Technology Roadmap for Semiconductors 2.0: Executive Report. Int, 2015, 1, 79.
[2]
Akerman, J. Applied physics. Toward a universal memory. Science, 2005, 308(5721), 508-510.
[http://dx.doi.org/10.1126/science.1110549] [PMID: 15845842]
[3]
Marrows, C.H.; Chapon, L.C.; Langridge, S. Spintronics and Functional materials. Mater. Today, 2009, 12(7-8), 70-77.
[http://dx.doi.org/10.1016/S1369-7021(09)70232-9]
[4]
Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today, 2017, 20, 530-548.
[http://dx.doi.org/10.1016/j.mattod.2017.07.007]
[5]
Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron., 2016, 125, 25-38.
[http://dx.doi.org/10.1016/j.sse.2016.07.006]
[6]
Meena, J.S.; Sze, S.M.; Chand, U.; Tseng, T-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett., 2014, 9(1), 526.
[http://dx.doi.org/10.1186/1556-276X-9-526] [PMID: 25278820]
[7]
Hamann, H-F.; O’Boyle, M.; Martin, Y.C.; Rooks, M.; Wickramasinghe, H.K. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5(5), 383-387.
[http://dx.doi.org/10.1038/nmat1627] [PMID: 16604077]
[8]
Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater., 2007, 6(11), 824-832.
[http://dx.doi.org/10.1038/nmat2009] [PMID: 17972937]
[9]
Chua, L-O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory, 1971, 18(5), 507-519.
[http://dx.doi.org/10.1109/TCT.1971.1083337]
[10]
Chua, L-O.; Kang, S-M. Memristive devices and systems. Proc. IEEE, 1976, 64, 209-223.
[http://dx.doi.org/10.1109/PROC.1976.10092]
[11]
Strukov, D-B.; Snider, G-S.; Stewart, D.R.; Williams, R-S. The missing memristor found. Nature, 2008, 453(7191), 80-83.
[http://dx.doi.org/10.1038/nature06932] [PMID: 18451858]
[12]
Yang, J-J.; Pickett, M-D.; Li, X.; Ohlberg, D-A-A.; Stewart, D-R.; Williams, R-S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol., 2008, 3(7), 429-433.
[http://dx.doi.org/10.1038/nnano.2008.160] [PMID: 18654568]
[13]
Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; Kim, M.; Hwang, C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol., 2010, 5(2), 148-153.
[http://dx.doi.org/10.1038/nnano.2009.456] [PMID: 20081847]
[14]
Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater., 2007, 6(11), 833-840.
[http://dx.doi.org/10.1038/nmat2023] [PMID: 17972938]
[15]
Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater., 2009, 21(25-26), 2632-2663.
[http://dx.doi.org/10.1002/adma.200900375]
[16]
Ahn, Y.; Jang, J.; Son, J.Y. Resistive switching characteristics and conducting nanobits of polycrystalline NiO thin films. J. Electroceram., 2017, 38, 100-103.
[http://dx.doi.org/10.1007/s10832-017-0067-0]
[17]
Ma, G.; Tang, X.; Zhang, H.; Zhong, Z.; Li, J.; Su, H. Effects of stress on resistive switching property of the NiO RRAM device. Microelectron. Eng., 2015, 139, 43-47.
[http://dx.doi.org/10.1016/j.mee.2015.04.095]
[18]
Wang, H.; Zou, C.; Zhou, L.; Tian, C.; Fu, D. Resistive switching characteristics of thin NiO film based flexible nonvolatile memory devices. Microelectron. Eng., 2012, 91, 144-146.
[http://dx.doi.org/10.1016/j.mee.2011.05.037]
[19]
He, L.; Liao, Z-M.; Wu, H-C.; Tian, X-X.; Xu, D-S.; Cross, G.L.W.; Duesberg, G.S.; Shvets, I.V.; Yu, D-P. Memory and threshold resistance switching in Ni/NiO core-shell nanowires. Nano Lett., 2011, 11(11), 4601-4606.
[http://dx.doi.org/10.1021/nl202017k] [PMID: 21985530]
[20]
Long, S.; Lian, X.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J. A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett., 2013, 34(8), 999-1001.
[http://dx.doi.org/10.1109/LED.2013.2266332]
[21]
Long, S.; Lian, X.; Ye, T.; Cagli, C.; Perniola, L.; Miranda, E.; Liu, M.; Suñé, J. Cycle-to-cycle intrinsic reset statistics in HfO2-based unipolar RRAM devices. IEEE Electron Device Lett., 2013, 34, 623-625.
[http://dx.doi.org/10.1109/LED.2013.2251314]
[22]
Banerjee, W.; Liu, Q.; Lv, H.; Long, S.; Liu, M. Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices. Nanoscale, 2017, 9(38), 14442-14450.
[http://dx.doi.org/10.1039/C7NR04741J] [PMID: 28926076]
[23]
Simanjuntak, F.M.; Prasad, O.K.; Panda, D.; Lin, C-A.; Tsai, T-L.; Wei, K-H.; Tseng, T-Y. Impacts of Co doping on ZnO transparent switching memory device characteristics. Appl. Phys. Lett., 2016, 2016108183506
[http://dx.doi.org/10.1063/1.4948598]
[24]
Wylezich, H.; Mähne, H.; Rensberg, J.; Ronning, C.; Zahn, P.; Slesazeck, S.; Mikolajick, T. Local ion irradiation-induced resistive threshold and memory switching in Nb2O5/NbO(x) films. ACS Appl. Mater. Interfaces, 2014, 6(20), 17474-17480.
[http://dx.doi.org/10.1021/am5021149] [PMID: 25212179]
[25]
Lee, M.J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; Chung, U.I.; Yoo, I.K.; Kim, K. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. Nat. Mater., 2011, 10(8), 625-630.
[http://dx.doi.org/10.1038/nmat3070] [PMID: 21743450]
[26]
Lv, F-C.; Yang, R.; Guo, X. Analog and digital Reset processes observed in Pt/CuO/Pt memristive devices. Solid State Ion., 2017, 303, 161-166.
[http://dx.doi.org/10.1016/j.ssi.2017.01.030]
[27]
Banerjee, W.; Xu, X.; Liu, H.; Lv, H.; Liu, Q.; Sun, H.; Long, S.; Liu, M. Occurrence of resistive switching and threshold switching in atomic layer deposited ultrathin (2 nm) aluminium oxide crossbar resistive random access memory. IEEE Electron Device Lett., 2015, 36(4), 333-335.
[http://dx.doi.org/10.1109/LED.2015.2407361]
[28]
Parreira, P.; Paterson, G.W.; McVitie, S.; MacLaren, D.A. Stability, bistability and instability of amorphous ZrO2 resistive memory devices. J. Phys. D Appl. Phys., 2016, 201649095111
[http://dx.doi.org/10.1088/0022-3727/49/9/095111]
[29]
Zhang, S.; Long, S.; Guan, W.; Liu, Q.; Wang, Q.; Liu, M. Resistive switching characteristics of MnOx based ReRAM. J. Phys. D Appl. Phys., 2009, 200942055112
[http://dx.doi.org/10.1088/0022-3727/42/5/055112]
[30]
Yang, M.K.; Kim, G.H.; Ju, H.; Lee, J-K.; Ryu, H-C. The interfacial layer effect on bi-stable resistive switching phenomenon in MnOx thin film. Appl. Phys. Lett., 2015, 107(5)053503
[http://dx.doi.org/10.1063/1.4928249]
[31]
Koza, J.A.; Schroen, I.P.; Willmering, M.M.; Switzer, J.A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem. Mater., 2014, 26(15), 4425-4432.
[http://dx.doi.org/10.1021/cm5014027]
[32]
Hu, Q.; Park, M.; Abbas, Y.; Kim, J.S.; Yoon, T-S.; Choi, Y.J.; Kang, C.J. Resistive switching properties of manganese oxide nanoparticles with hexagonal shape. Semicond. Sci. Technol., 2015, 201530015017
[http://dx.doi.org/10.1088/0268-1242/30/1/015017]
[33]
Hu, Q.; Shim, J.H.; Abbas, Y.; Song, W.; Yoon, T.S.; Choi, Y.J.; Kang, C.J. Resistive switching characteristics of manganese oxide nanoparticle assembly with crossbar arrays. J. Nanosci. Nanotechnol., 2014, 14(11), 8182-8186.
[http://dx.doi.org/10.1166/jnn.2014.9878] [PMID: 25958496]
[34]
Xu, J.; Yang, Z.; Zhang, Y.; Zhang, X.; Wang, H. Bipolar resistive switching behaviours in ZnMn2O4 film deposited on p+-Si substrate by chemical solution deposition. Bull. Mater. Sci., 2014, 37(7), 1657-1662.
[http://dx.doi.org/10.1007/s12034-014-0731-9]
[35]
Abbas, H.; Park, M.R.; Abbas, Y.; Hu, Q.; Kang, T.S.; Yoon, T-S.; Kang, C.J. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices.Jpn. J. Appl. Phys., 2018, 2018, 5706HC03,
[http://dx.doi.org/10.7567/JJAP.57.06HC03]
[36]
Li, Y.; Chu, J.; Duan, W.; Cai, G.; Fan, X.; Wang, X.; Wang, G.; Pei, Y. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29), 24598-24606.
[http://dx.doi.org/10.1021/acsami.8b05749] [PMID: 29995376]
[37]
Yun, J.; Cho, K.; Park, B.; Park, B.H.; Kim, S. Resistance switching memory devices constructed on plastic with solution-processed titanium oxide. J. Mater. Chem., 2009, 19, 2082-2085.
[http://dx.doi.org/10.1039/b817062b]
[38]
Wang, S-Y.; Huang, C-W.; Lee, D-Y.; Tseng, T-Y.; Chang, T-C. Multilevel resistive switching in Ti/CuxO/PtTi/CuxO/Pt memory devices. J. Appl. Phys., 2010, 2010108114110
[http://dx.doi.org/10.1063/1.3518514]
[39]
Gudavarthy, R.V.; Miller, A.S.; Bohannan, E.W.; Kulp, E.A.; He, Z.; Switzer, J.A. Resistance switching in electrodeposited polycrystalline Fe3O4 films. Electrochim. Acta, 2011, 56, 10550-10556.
[http://dx.doi.org/10.1016/j.electacta.2011.02.032]
[40]
Zaffora, A.; Macaluso, R.; Habazaki, H.; Valov, I.; Santamaria, M. Electrochemically prepared oxides for resistive switching devices. Electrochim. Acta, 2018, 274, 103-111.
[http://dx.doi.org/10.1016/j.electacta.2018.04.087]
[41]
Huang, J-S.; Lee, C-Y.; Chin, T-S. Forming-free bipolar memristive switching of ZnO films deposited by cyclic-voltammetry. Electrochim. Acta, 2013, 91, 62-68.
[http://dx.doi.org/10.1016/j.electacta.2012.12.030]
[42]
Koza, J.A.; Bohannan, E.W.; Switzer, J.A. Superconducting filaments formed during nonvolatile resistance switching in electrodeposited δ-Bi(2)O(3). ACS Nano, 2013, 7(11), 9940-9946.
[http://dx.doi.org/10.1021/nn4038207] [PMID: 24079326]
[43]
Larbi, T.; Ouni, B.; Boukhachem, A.; Boubaker, K.; Amlouk, M. Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film. Mater. Res. Bull., 2014, 60, 457-466.
[http://dx.doi.org/10.1016/j.materresbull.2014.09.007]
[44]
Korzhavyi, P.A.; Abrikosov, I.A.; Johansson, B. First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B, 1999, 59, 11693-11703.
[http://dx.doi.org/10.1103/PhysRevB.59.11693]
[45]
Jeong, D.S. Thomas.R.; Katiyar, R.S.; Scott,J.F.; Kohlstedt,H; Petaru,A; Hwang, C.S. Emerging memories: Resistive switching mechanism and current status. Rep. Prog. Phys., 2012, 201275076502
[http://dx.doi.org/10.1088/0034-4885/75/7/076502] [PMID: 22790779]
[46]
Chen, L.; Sun, Q-Q.; Gu, J-J.; Xu, Y.; Ding, S-J.; Zhang, D.W. Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr. Appl. Phys., 2011, 11, 849-852.
[http://dx.doi.org/10.1016/j.cap.2010.12.005]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 5
Year: 2020
Page: [622 - 630]
Pages: 9
DOI: 10.2174/2210681209666190627151820
Price: $25

Article Metrics

PDF: 12
HTML: 1