Cationic Antimicrobial Peptides for Tuberculosis: A Mini-Review

Author(s): Sara Silva, Nuno Vale*

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 9 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Cationic antimicrobial peptides (CAMPs) can be considered as new potential therapeutic agents for Tuberculosis treatment with a specific amino acid sequence. New studies can be developed in the future to improve the pharmacological properties of CAMPs and also understand possible resistance mechanisms. This review discusses the principal properties of natural and/or synthetic CAMPs, and how these new peptides have a significant specificity for Mycobacterium tuberculosis. Also, we propose some alternative strategies to enhance the therapeutic activity of these CAMPs that include coadministration with nanoparticles and/or classic drugs.

Keywords: Tuberculosis, Mycobacterium tuberculosis, antimicrobial peptides, natural CAMPs, synthetic CAMPs.

[1]
World Health Organization. 2016 Global Tuberculosis Report 2016. World Health Organizatio, Geneva, Switzerland. Available at: http://apps.who.int/iris/bitstream/10665/250441/1/978924156-5394-eng.pdf?ua=1
[2]
Hancock, R.E.W.; Lehrer, R. Cationic peptides: A new source of antibiotics. Trends Biotechnol., 1998, 16(2), 82-88.
[3]
Lakshmaiah, N.J.; Chen, J.Y. Antimicrobial peptides: Possible anti-infective agents. Peptides, 2015, 72, 88-94.
[4]
Anaya-López, J.L.; López-Meza, J.E.; Ochoa-Zarzosa, A. Bacterial resistance to cationic antimicrobial peptides. Crit. Rev. Microbiol., 2013, 39(2), 180-195.
[5]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[6]
McPhee, J.; Scott, M.; Hancock, R. Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb. Chem. High Throughput Screen., 2005, 8(3), 257-272.
[7]
Sharma, S.; Verma, I.; Khuller, G.K. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: In vitro and ex vivo study. Eur. Respir. J., 2000, 16(1), 112-117.
[8]
Miyakawa, Y.; Ratnakar, P.; Rao, A.G.; Costello, M.L.; Mathieu-Costello, O.; Lehrer, R.I.; Catanzaro, A. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect. Immun., 1996, 64(3), 926-932.
[9]
Fattorini, L.; Gennaro, R.; Zanetti, M.; Tan, D.; Brunori, L.; Giannoni, F.; Pardini, M.; Orefici, G. In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides, 2004, 25(7), 1075-1077.
[10]
Linde, C.M.A.; Hoffner, S.E.; Refai, E.; Andersson, M. Susceptible and multi-drug-resistant Mycobacterium tuberculosis. 2001, 1, 575- 580.
[11]
Rivas-Santiago, B.; Rivas Santiago, C.E.; Castañeda-Delgado, J.E.; León-Contreras, J.C.; Hancock, R.E.W.; Hernandez-Pando, R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2013, 41(2), 143-148.
[12]
Jiang, Z.; Higgins, M.P.; Whitehurst, J.; Kisich, K.O.; Voskuil, M.I.; Hodges, R.S. Anti-tuberculosis activity of α-helical antimicrobial peptides: De novo designed L- and D-enantiomers versus L- and D-LL37. Protein Pept. Lett., 2011, 18(3), 241-252.
[13]
Santos, P.; Gordillo, A.; Osses, L.; Salazar, L.M.; Soto, C.Y. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides, 2012, 36(1), 121-128.
[14]
Sharma, R.; Saikia, U.N.; Sharma, S.; Verma, I. Activity of human beta defensin-1 and its motif against active and dormant Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol., 2017, 101(19), 7239-7248.
[15]
Gao, W.; Kim, J.Y.; Anderson, J.R.; Akopian, T.; Hong, S.; Jin, Y.Y.; Kandror, O.; Kim, J.W.; Lee, I.A.; Lee, S.Y.; McAlpine, J.B.; Mulugeta, S.; Sunoqrot, S.; Wang, Y.; Yang, S.H.; Yoon, T.M.; Goldberg, A.L.; Pauli, G.F.; Suh, J.W.; Franzblau, S.G.; Cho, S. The cyclic peptide ecumicin targeting CLpC1 is active against Mycobacterium tuberculosis in vivo. Antimicrob. Agents Chemother., 2015, 59(2), 880-889.
[16]
Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; Torrey, H.; Akopian, T.; Mueller, A.; Epstein, S.; Goldberg, A.; Clardy, J.; Lewis, K. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol., 2014, 21(4), 509-518.
[17]
Ramírez-Carreto, S.; Jiménez-Vargas, J.M.; Rivas-Santiago, B.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides, 2015, 73, 51-59.
[18]
Xie, J.P.; Yue, J.; Xiong, Y.L.; Wang, W.Y.; Yu, S.Q.; Wang, H.H. In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2003, 22(2), 172-174.
[19]
Daletos, G.; Kalscheuer, R.; Koliwer-Brandl, H.; Hartmann, R.; De Voogd, N.J.; Wray, V.; Lin, W.; Proksch, P. Callyaerins from the marine sponge Callyspongia aerizusa: Cyclic peptides with antitubercular activity. J. Nat. Prod., 2015, 78(8), 1910-1925.
[20]
Carroll, J.; Draper, L.; O’Connor, P.M.; Coffey, A.; Hill, C.; Ross, R.P.; Cotter, P.D.; O’Mahony, J. Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int. J. Antimicrob. Agents, 2010, 36(2), 132-136.
[21]
Pearson, C.S.; Kloos, Z.; Murray, B.; Tabe, E.; Gupta, M.; Kwak, J.H.; Karande, P.; McDonough, K.; Belfort, G. Combined bioinformatic and rational design approach to develop antimicrobial peptides against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(5), 2757-2764.
[22]
Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob. Agents Chemother., 2013, 57(5), 2295-2303.
[23]
Silva, S.; Santos-Silva, A.; Manuel Correia da Costa, J.; Vale, N. Potent cationic antimicrobial peptides against Mycobacterium tuberculosis in vitro. J. Glob. Antimicrob. Resist., 2019.
[http://dx.doi.org/10.1016/j.jgar.2019.04.018]
[24]
Kapoor, R.; Eimerman, P.R.; Hardy, J.W.; Cirillo, J.D.; Contag, C.H.; Barron, A.E. Efficacy of antimicrobial peptoids against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(6), 3058-3062.
[25]
Ong, Z.Y.; Cheng, J.; Huang, Y.; Xu, K.; Ji, Z.; Fan, W.; Yang, Y.Y. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles. Biomaterials, 2014, 35(4), 1315-1325.
[26]
Khara, J.S.; Wang, Y.; Ke, X.Y.; Liu, S.; Newton, S.M.; Langford, P.R.; Yang, Y.Y.; Ee, P.L.R. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials, 2014, 35(6), 2032-2038.
[27]
Hicks, R.P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted c(α) amino acids. Bioorg. Med. Chem., 2016, 24(18), 4056-4065.
[28]
Lan, Y.; Lam, J.T.; Siu, G.K.H.; Yam, W.C.; Mason, A.J.; Lam, J.K.W. Cationic amphipathic d-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis. Tuberculosis, 2014, 94(6), 678-689.
[29]
Kwok, P.C.L.; Grabarek, A.; Chow, M.Y.T.; Lan, Y.; Li, J.C.W.; Casettari, L.; Mason, A.J.; Lam, J.K.W. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int. J. Pharm., 2015, 491(1-2), 367-374.
[30]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[31]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: Therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[32]
Schmidtchen, A.; Malmsten, M. (Lipo)polysaccharide interactions of antimicrobial peptides. J. Colloid Interface Sci., 2015, 449, 136-142.
[33]
Vale, N.; Correia, A.; Silva, S.; Figueiredo, P.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Pedrosa, J.; Santos, H.A.; Fraga, A. Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2018, 23(3), 403-405.
[34]
Vale, N.; Veloso, R.C.; Gomes, P. Exploring the solid‐phase synthesis of sulfotyrosine peptides. Eur. J. Org. Chem., 2015, 2015(34), 7413-7425.
[35]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E.W. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[36]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2019
Published on: 16 September, 2019
Page: [885 - 892]
Pages: 8
DOI: 10.2174/1389203720666190626160057
Price: $65

Article Metrics

PDF: 33
HTML: 4