Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Factors Affecting the Metabolite Productions in Endophytes: Biotechnological Approaches for Production of Metabolites

Author(s): Viridiana Morales-Sánchez, Maria Fe Andrés, Carmen Elisa Díaz and Azucena González-Coloma*

Volume 27, Issue 11, 2020

Page: [1855 - 1873] Pages: 19

DOI: 10.2174/0929867326666190626154421

Price: $65

Abstract

Since 1980, many species and different strains from endophytic genera of Phomopsis, Fusarium, Pestaliopsis and Aspergillus have been studied because of their ability to produce medicinal compounds found in their host plants. Some of these medicinal agents such as Taxol, Brefeldine A, Camptothecin and Podophyllotoxin are being produced in large-scale after an optimization process. However, the potential of fungal endophytes to produce host-like medicinal compounds remains largely unexplored.

Keywords: Endophytes, secondary metabolites, anticancer, drugs, biotechnology, medicinal compounds.

« Previous
[1]
Strohl, W.R. The role of natural products in a modern drug discovery program. Drug Discov. Today, 2000, 5(2), 39-41.
[http://dx.doi.org/10.1016/S1359-6446(99)01443-9] [PMID: 10652450]
[2]
Taylor, L. Plant based drugs and medicines., http://www.rain-tree.com2017.
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[4]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[5]
Schiff, P.L. Opium and its alkaloids. Am. J. Pharm. Educ., 2002, 66(2), 188-196.
[6]
Wang, J.; Li, J.L.; Li, J.; Li, J.X.; Liu, S.J.; Huang, L.Q.; Gao, W.Y. Production of active compounds in medicinal plants: from plant tissue culture to biosynthesis. Chin. Herb. Med., 2017, 9(2), 115-125.
[http://dx.doi.org/10.1016/S1674-6384(17)60085-6]
[7]
Wilson, D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2), 274-276.
[http://dx.doi.org/10.2307/3545919]
[8]
Bacon, C.W.; White, J.F. Microbial Endophytes, 2000.
[9]
Schulz, B.; Boyle, C. What are Endophytes?Microbial Root Endophytes; Soil Biology, 2006.
[10]
Dutta, D.; Puzari, K.C.; Gogoi, R.; Dutta, P. Endophytes: Exploitation as a tool in plant protection. Braz. Arch. Biol. Technol., 2014, 57(5), 621-629.
[http://dx.doi.org/10.1590/S1516-8913201402043]
[11]
Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 2003, 67(4), 491-502.
[http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003] [PMID: 14665674]
[12]
Nalini, M.S.; Prakash, H.S. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett. Appl. Microbiol., 2017, 64(4), 261-270.
[http://dx.doi.org/10.1111/lam.12718] [PMID: 28107573]
[13]
Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep., 2006, 23(5), 753-771.
[http://dx.doi.org/10.1039/b609472b] [PMID: 17003908]
[14]
Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat., 2002, 160(S4)(Suppl. 4), S99-S127.
[http://dx.doi.org/10.1086/342161] [PMID: 18707456]
[15]
Wang, Y.; Dai, C. Endophytes: A potential resource for biosynthesis, biotransformation, and biodegradation. Ann. Microbiol., 2011, 61(2), 207-215.
[http://dx.doi.org/10.1007/s13213-010-0120-6]
[16]
Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.; Krohn, K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 2002, 106(9), 996-1004.
[http://dx.doi.org/10.1017/S0953756202006342]
[17]
Hansson, D. 2013.
[18]
Firáková, S.; Šturdíková, M.; Múčková, M. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia, 2007, 62(3), 251-257.
[http://dx.doi.org/10.2478/s11756-007-0044-1]
[19]
Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat. Prod. Rep., 2011, 28(7), 1208-1228.
[http://dx.doi.org/10.1039/c1np00008j] [PMID: 21455524]
[20]
Chen, L.; Zhang, Q.Y.; Jia, M.; Ming, Q.L.; Yue, W.; Rahman, K.; Qin, L.P.; Han, T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit. Rev. Microbiol., 2016, 42(3), 454-473.
[http://dx.doi.org/10.3109/1040841X.2014.959892] [PMID: 25343583]
[21]
Andrés, M.F.; Diaz, C.E.; Giménez, C.; Cabrera, R.; González-Coloma, A. Endophytic fungi as novel sources of biopesticides: the Macaronesian Laurel forest, a case study. Phytochem. Rev., 2017, 16(5), 1009-1022.
[http://dx.doi.org/10.1007/s11101-017-9514-4]
[22]
González-Coloma, A.; Cosoveanu, A.; Cabrera, R.; Giménez, C.; Kaushik, N. Endophytic Fungi and Their Bioprospection; Fungi. Applications and Management Strategies, 2016.
[23]
Germaine, K.; Keogh, E.; Garcia-Cabellos, G.; Borremans, B.; Lelie, D.; Barac, T.; Oeyen, L.; Vangronsveld, J.; Moore, F.P.; Moore, E.R.; Campbell, C.D.; Ryan, D.; Dowling, D.N. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol., 2004, 48(1), 109-118.
[http://dx.doi.org/10.1016/j.femsec.2003.12.009] [PMID: 19712436]
[24]
Guo, B.; Wang, Y.; Sun, X.; Tang, K. Bioactive natural products from endophytes: a review. Prikl. Biokhim. Mikrobiol., 2008, 44(2), 153-158.
[PMID: 18669256]
[25]
Jennewein, S.; Rithner, C.D.; Williams, R.M.; Croteau, R.B. Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13595-13600.
[http://dx.doi.org/10.1073/pnas.251539398] [PMID: 11707604]
[26]
Chandra, S. Endophytic fungi: novel sources of anticancer lead molecules. Appl. Microbiol. Biotechnol., 2012, 95(1), 47-59.
[http://dx.doi.org/10.1007/s00253-012-4128-7] [PMID: 22622838]
[27]
Bömke, C.; Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 2009, 70(15-16), 1876-1893.
[http://dx.doi.org/10.1016/j.phytochem.2009.05.020] [PMID: 19560174]
[28]
Heinig, U.; Scholz, S.; Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers., 2013, 60(1), 161-170.
[http://dx.doi.org/10.1007/s13225-013-0228-7]
[29]
Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495.
[http://dx.doi.org/10.1016/j.micres.2013.12.009] [PMID: 24582778]
[31]
Martinez-Klimova, E.; Rodríguez-Peña, K.; Sánchez, S. Endophytes as sources of antibiotics. Biochem. Pharmacol., 2017, 134, 1-17.
[http://dx.doi.org/10.1016/j.bcp.2016.10.010] [PMID: 27984002]
[32]
Weber, R.W.; Stenger, E.; Meffert, A.; Hahn, M. Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol. Res., 2004, 108(Pt 6), 662-671.
[http://dx.doi.org/10.1017/S0953756204000243] [PMID: 15323249]
[33]
Hussain, H.; Kock, I.; Al-Harrasi, A.; Al-Rawahi, A.; Abbas, G.; Green, I.R.; Shah, A.; Badshah, A.; Saleem, M.; Draeger, S.; Schulz, B.; Krohn, K. Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac. J. Trop. Dis., 2014, 7(9), 699-702.
[http://dx.doi.org/10.1016/S1995-7645(14)60119-X]
[34]
Weber, D.; Sterner, O.; Anke, T.; Gorzalczancy, S.; Martino, V.; Acevedo, C. Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J. Antibiot. (Tokyo), 2004, 57(9), 559-563.
[http://dx.doi.org/10.7164/antibiotics.57.559] [PMID: 15580955]
[35]
Horn, W.S.; Simmonds, M.S.J.; Schwartz, R.E.; Blaney, W.M. Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron, 1995, 51(14), 3969-3978.
[http://dx.doi.org/10.1016/0040-4020(95)00139-Y]
[36]
Jouda, J.B.; Tamokou, J.D.; Mbazoa, C.D.; Douala-Meli, C.; Sarkar, P.; Bag, P.K.; Wandji, J. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement. Altern. Med., 2016, 16(1), 462.
[http://dx.doi.org/10.1186/s12906-016-1454-9] [PMID: 27842536]
[37]
Castillo, U.; Harper, J.K.; Strobel, G.A.; Sears, J.; Alesi, K.; Ford, E.; Lin, J.; Hunter, M.; Maranta, M.; Ge, H.; Yaver, D.; Jensen, J.B.; Porter, H.; Robison, R.; Millar, D.; Hess, W.M.; Condron, M.; Teplow, D. Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol. Lett., 2003, 224(2), 183-190.
[http://dx.doi.org/10.1016/S0378-1097(03)00426-9] [PMID: 12892881]
[38]
Ezra, D.; Castillo, U.F.; Strobel, G.A.; Hess, W.M.; Porter, H.; Jensen, J.B.; Condron, M.A.M.; Teplow, D.B.; Sears, J.; Maranta, M.; Hunter, M.; Weber, B.; Yaver, D. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 2004, 150(Pt 4), 785-793.
[http://dx.doi.org/10.1099/mic.0.26645-0] [PMID: 15073289]
[39]
Castillo, U.F.; Strobel, G.A.; Ford, E.J.; Hess, W.M.; Porter, H.; Jensen, J.B.; Albert, H.; Robison, R.; Condron, M.A.M.; Teplow, D.B.; Stevens, D.; Yaver, D. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 2002, 148(Pt 9), 2675-2685.
[http://dx.doi.org/10.1099/00221287-148-9-2675] [PMID: 12213914]
[40]
Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol., 2004, 114(3), 279-287.
[http://dx.doi.org/10.1016/j.jbiotec.2004.07.008] [PMID: 15522437]
[41]
Geris dos Santos, R.M.; Rodrigues-Fo, E. Meroterpenes from Penicillium sp found in association with Melia azedarach. Phytochemistry, 2002, 61(8), 907-912.
[http://dx.doi.org/10.1016/S0031-9422(02)00379-5] [PMID: 12453515]
[42]
Singh, B.; Zink, D.; Guan, Z.; Collado, J.; Pelaez, F.; Felock, P.; Hazuda, D. Isolation, structure, and HIV‐1 integrase inhibitory activity of Xanthoviridicatin E and F, two novel fungal metabolites produced by Penicillium chrysogenum. Helv. Chim. Acta, 2003, 86(10), 3380-3385.
[http://dx.doi.org/10.1002/hlca.200390281]
[43]
Lu, H.; Zou, W.X.; Meng, J.C.; Hu, J.; Tan, R.X. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci., 2000, 151(1), 67-73.
[http://dx.doi.org/10.1016/S0168-9452(99)00199-5]
[44]
Park, J.H.; Choi, G.J.; Lee, H.B.; Kim, K.M.; Jung, H.S.; Lee, S.W.; Kim, J.C. Griseofulvin from Xylaria sp. Strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J. Microbiol. Biotechnol., 2005, 15(1), 112-117.
[45]
Ma, Y.M.; Li, Y.; Liu, J.Y.; Song, Y.C.; Tan, R.X. Anti-Helicobacter pylori metabolites from Rhizoctonia sp. Cy064, an endophytic fungus in Cynodon dactylon. Fitoterapia, 2004, 75(5), 451-456.
[http://dx.doi.org/10.1016/j.fitote.2004.03.007] [PMID: 15261382]
[47]
Wagenaar, M.M.; Clardy, J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J. Nat. Prod., 2001, 64(8), 1006-1009.
[http://dx.doi.org/10.1021/np010020u] [PMID: 11520215]
[48]
Bunyapaiboonsri, T.; Yoiprommarat, S.; Srikitikulchai, P.; Srichomthong, K.; Lumyong, S. Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J. Nat. Prod., 2010, 73(1), 55-59.
[http://dx.doi.org/10.1021/np900650c] [PMID: 20038128]
[49]
Isaka, M.; Jaturapat, A.; Rukseree, K.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J. Nat. Prod., 2001, 64(8), 1015-1018.
[http://dx.doi.org/10.1021/np010006h] [PMID: 11520217]
[50]
Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M.; Young, B. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 1996, 142(Pt 2), 435-440.
[http://dx.doi.org/10.1099/13500872-142-2-435] [PMID: 8932715]
[51]
Li, J.Y.; Harper, J.K.; Grant, D.M.; Tombe, B.O.; Bashyal, B.; Hess, W.M.; Strobel, G.A. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 2001, 56(5), 463-468.
[http://dx.doi.org/10.1016/S0031-9422(00)00408-8] [PMID: 11261579]
[52]
Zhan, J.; Burns, A.M.; Liu, M.X.; Faeth, S.H.; Gunatilaka, A.A.L. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J. Nat. Prod., 2007, 70(2), 227-232.
[http://dx.doi.org/10.1021/np060394t] [PMID: 17286429]
[53]
Nadeem, M. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr. J. Microbiol. Res., 2012, 6(10), 2493-2499.
[54]
Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry, 2008, 69(5), 1273-1278.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.030] [PMID: 18067932]
[55]
Aly, A.H.; Edrada-Ebel, R.; Indriani, I.D.; Wray, V.; Müller, W.E.G.; Totzke, F.; Zirrgiebel, U.; Schächtele, C.; Kubbutat, M.H.; Lin, W.H.; Proksch, P.; Ebel, R. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod., 2008, 71(6), 972-980.
[http://dx.doi.org/10.1021/np070447m] [PMID: 18494522]
[56]
Huang, C.H.; Pan, J.H.; Chen, B.; Yu, M.; Huang, H.B.; Zhu, X.; Lu, Y.J.; She, Z.G.; Lin, Y.C. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs, 2011, 9(5), 832-843.
[http://dx.doi.org/10.3390/md9050832] [PMID: 21673892]
[57]
Song, Y.C.; Li, H.; Ye, Y.H.; Shan, C.Y.; Yang, Y.M.; Tan, R.X. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol. Lett., 2004, 241(1), 67-72.
[http://dx.doi.org/10.1016/j.femsle.2004.10.005] [PMID: 15556711]
[58]
Ge, H.M.; Yu, Z.G.; Zhang, J.; Wu, J.H.; Tan, R.X. Bioactive alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod., 2009, 72(4), 753-755.
[http://dx.doi.org/10.1021/np800700e] [PMID: 19256529]
[59]
Stierle, A.A.; Stierle, D.B.; Bugni, T. Sequoiatones A and B: novel antitumor metabolites isolated from a redwood endophyte. J. Org. Chem., 1999, 64(15), 5479-5484.
[http://dx.doi.org/10.1021/jo990277l] [PMID: 11674610]
[60]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[61]
Cragg, G.M.; Newman, D.J.; Snader, K.M. Natural products in drug discovery and development. J. Nat. Prod., 1997, 60(1), 52-60.
[http://dx.doi.org/10.1021/np9604893] [PMID: 9014353]
[62]
Kumar, A.; Ahmad, A. Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatal. Biotransform., 2013, 31(2), 89-93.
[http://dx.doi.org/10.3109/10242422.2013.776544]
[63]
Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem., 2011, 46(1), 23-34.
[http://dx.doi.org/10.1016/j.procbio.2010.09.004]
[64]
Cragg, G.M. Paclitaxel (Taxol): a success story with valuable lessons for natural product drug discovery and development. Med. Res. Rev., 1998, 18(5), 315-331.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<315:AID-MED3>3.0.CO;2-W] [PMID: 9735872]
[65]
Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA, 1980, 77(3), 1561-1565.
[http://dx.doi.org/10.1073/pnas.77.3.1561] [PMID: 6103535]
[66]
Howat, S.; Park, B.; Oh, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: biosynthesis, production and future prospects. N. Biotechnol., 2014, 31(3), 242-245.
[http://dx.doi.org/10.1016/j.nbt.2014.02.010] [PMID: 24614567]
[67]
Holton, R.A.; Somoza, C.; Kim, B.H.; Liang, F.; Biediger, J.R.; Boatman, D.P.; Shindo, M.; Smith, C.C.; Kim, S.; Nadizadeh, H.; Suziki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K.; Gentile, L.; Liu, J. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc., 1994, 116(4), 1597-1598.
[http://dx.doi.org/10.1021/ja00083a066]
[68]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Claiborne, C.F.; Renaud, J.; Couladouros, E.A.; Paulvannan, K. Total synthesis of taxol. Nature, 1994, 367(6464), 630-634.
[http://dx.doi.org/10.1038/367630a0] [PMID: 7906395]
[69]
Collin, H.A. Secondary product formation in plant tissue cultures. J. Plant Growth Regul., 2001, 34(1), 119-134.
[http://dx.doi.org/10.1023/A:1013374417961]
[70]
Hezari, M.; Ketchum, R.E.B.; Gibson, D.M.; Croteau, R. Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch. Biochem. Biophys., 1997, 337(2), 185-190.
[http://dx.doi.org/10.1006/abbi.1996.9772] [PMID: 9016812]
[71]
Roberts, S.C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol., 2007, 3(7), 387-395.
[http://dx.doi.org/10.1038/nchembio.2007.8] [PMID: 17576426]
[72]
Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 1993, 260(5105), 214-216.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[73]
Zaiyou, J.; Li, M.; Xiqiao, H. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine (Baltimore), 2017, 96(27)e7406
[http://dx.doi.org/10.1097/MD.0000000000007406] [PMID: 28682896]
[74]
Flores-Bustamante, Z.R.; Rivera-Orduña, F.N.; Martínez-Cárdenas, A.; Flores-Cotera, L.B. Microbial paclitaxel: advances and perspectives. J. Antibiot. (Tokyo), 2010, 63(8), 460-467.
[http://dx.doi.org/10.1038/ja.2010.83] [PMID: 20628412]
[75]
Shankar, N.A. Developments in taxol production through endophytic fungal biotechnology: a review. Orient. Pharm. Exp. Med., 2019, 19, 1-13.
[http://dx.doi.org/10.1007/s13596-018-0352-8]
[76]
Wink, M.; Alfermann, A.; Franke, R.; Wetterauer, B.; Distl, M.; Windhövel, J.; Krohn, O.; Fuss, E.; Garden, H.; Mohagheghzadeh, A.; Wildi, E.; Ripplinger, P. Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet. Resour., 2005, 3(2), 90-100.
[http://dx.doi.org/10.1079/PGR200575]
[77]
Expósito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M.H.; Cusidó, R.M.; Palazón, J. Biotechnological production of taxol and related taxoids: current state and prospects. Anticancer. Agents Med. Chem., 2009, 9(1), 109-121.
[http://dx.doi.org/10.2174/187152009787047761] [PMID: 19149486]
[78]
Ji, Y.; Bi, J.N.; Yan, B.; Zhu, X.D. [Taxol-producing fungi: a new approach to industrial production of taxol]. Sheng Wu Gong Cheng Xue Bao, 2006, 22(1), 1-6.
[http://dx.doi.org/10.1016/S1872-2075(06)60001-0] [PMID: 16572833]
[80]
Loike, J.D.; Horwitz, S.B. Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells. Biochemistry, 1976, 15(25), 5435-5443.
[http://dx.doi.org/10.1021/bi00670a003] [PMID: 999818]
[81]
Horwitz, S.B.; Loike, J.D. A comparison of the mechanisms of action of VP-16-213 and podophyllotoxin. Lloydia, 1977, 40(1), 82-89.
[PMID: 875640]
[82]
Minocha, A.; Long, B.H. Inhibition of the DNA catenation activity of type II topoisomerase by VP16-213 and VM26. Biochem. Biophys. Res. Commun., 1984, 122(1), 165-170.
[http://dx.doi.org/10.1016/0006-291X(84)90454-6] [PMID: 6331440]
[83]
Yousefzadi, M.; Sharifi, M.; Behmanesh, M.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazon, J. Podophyllotoxin: current approaches to its biotechnological production and future challenges. Eng. Life Sci., 2010, 10(4), 281-292.
[http://dx.doi.org/10.1002/elsc.201000027]
[84]
Yousefzadi, M.; Sharifi, M.; Behmanesh, M.; Ghasempour, A.; Moyano, E.; Palazon, J. Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol. Lett., 2010, 32(11), 1739-1743.
[http://dx.doi.org/10.1007/s10529-010-0343-4] [PMID: 20607358]
[85]
Kumar, P.; Pal, T.; Sharma, N.; Kumar, V.; Sood, H.; Chauhan, R.S. Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle. Protoplasma, 2015, 252(5), 1253-1262.
[http://dx.doi.org/10.1007/s00709-015-0757-x] [PMID: 25586110]
[86]
Lau, W.; Sattely, E.S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 2015, 349(6253), 1224-1228.
[http://dx.doi.org/10.1126/science.aac7202] [PMID: 26359402]
[87]
Farkya, S.; Bisaria, V.S.; Srivastava, A.K. Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl. Microbiol. Biotechnol., 2004, 65(5), 504-519.
[http://dx.doi.org/10.1007/s00253-004-1680-9] [PMID: 15378293]
[88]
Ionkova, I. Anticancer compounds from in vitro cultures of rare medicinal plants. Pharmacol. Rev., 2008, 2, 206-218.
[89]
Tang, Y.J.; Li, Y.; Zhong, J.J. Novel biotransformation process of podophyllotoxin to produce podophyllic acid and picropodophyllotoxin by Pseudomonas aeruginosa CCTCC AB93066. Part I: process development. Bioprocess Biosyst. Eng., 2009, 32(5), 663-671.
[http://dx.doi.org/10.1007/s00449-008-0290-9] [PMID: 19115065]
[91]
Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-Ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; Sharma, A.; Kumar, R.; Sharma, R.K.; Qazi, G.N. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol., 2006, 122(4), 494-510.
[http://dx.doi.org/10.1016/j.jbiotec.2005.10.015] [PMID: 16375985]
[92]
Kour, A.; Shawl, A.S.; Rehman, S.; Sultan, P.; Qazi, P.H.; Suden, P.; Khajuria, R.; Verma, V. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J. Microbiol. Biotechnol., 2008, 24(7), 1115-1121.
[http://dx.doi.org/10.1007/s11274-007-9582-5]
[93]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[94]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminate 1, 2. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[95]
Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71(1), 117-122.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.030] [PMID: 19863979]
[96]
Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod., 2009, 72(1), 2-7.
[http://dx.doi.org/10.1021/np800455b] [PMID: 19119919]
[97]
Rehman, S.; Shawl, A.S.; Verma, V.; Kour, A.; Athar, M.; Andrabi, R.; Sultan, P.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl. Biokhim. Mikrobiol., 2008, 44(2), 225-231.
[PMID: 18669267]
[98]
Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod., 2005, 68(12), 1717-1719.
[http://dx.doi.org/10.1021/np0502802] [PMID: 16378360]
[99]
Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol., 2013, 97(21), 9365-9375.
[http://dx.doi.org/10.1007/s00253-013-5163-8] [PMID: 23949997]
[100]
Greeson, J.M.; Sanford, B.; Monti, D.A. St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology (Berl.), 2001, 153(4), 402-414.
[http://dx.doi.org/10.1007/s002130000625] [PMID: 11243487]
[101]
Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol., 2001, 53(5), 583-600.
[http://dx.doi.org/10.1211/0022357011775910] [PMID: 11370698]
[102]
Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 2008, 71(2), 159-162.
[http://dx.doi.org/10.1021/np070669k] [PMID: 18220354]
[103]
Yan, L.; Zhao, H.; Zhao, X.; Xu, X.; Di, Y.; Jiang, C.; Shi, J.; Shao, D.; Huang, Q.; Yang, H.; Jin, M. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl. Microbiol. Biotechnol., 2018, 102(15), 6279-6298.
[http://dx.doi.org/10.1007/s00253-018-9101-7] [PMID: 29808328]
[104]
Ahamed, A.; Ahring, B.K. Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour. Technol., 2011, 102(20), 9718-9722.
[http://dx.doi.org/10.1016/j.biortech.2011.07.073] [PMID: 21852119]
[105]
El-Gendy, M.M.A.A.; Al-Zahrani, H.A.A.; El-Bondkly, A.M.A. Genome shuffling of Mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology, 2016, 44(3), 171-179.
[http://dx.doi.org/10.5941/MYCO.2016.44.3.171] [PMID: 27790068]
[106]
Venugopalan, A.; Srivastava, S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv., 2015, 33(6 Pt 1), 873-887.
[http://dx.doi.org/10.1016/j.biotechadv.2015.07.004] [PMID: 26225453]
[107]
Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol., 2010, 86(6), 1707-1717.
[http://dx.doi.org/10.1007/s00253-010-2546-y] [PMID: 20358192]
[108]
Zhou, X.; Wei, Y.M.; Zhu, H.F.; Wang, Z.N.; Lin, J.; Liu, L.; Tang, K.X. Protoplast formation, regeneration and transformation from the taxol-producing fungus Ozonium sp. Afr. J. Biotechnol., 2008, 7, 2017-2024.
[http://dx.doi.org/10.5897/AJB2008.000-5050]
[109]
Zhao, K.; Sun, L.; Wang, X.; Li, X.; Wang, X.; Zhou, D. [Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by suppression subtracted hybridization for differentially expressed genes]. Wei Sheng Wu Xue Bao, 2011, 51(7), 923-933.
[PMID: 22043793]
[110]
Wang, M.; Zhang, W.; Xu, W.; Shen, Y.; Du, L. Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Appl. Microbiol. Biotechnol., 2016, 100(17), 7491-7498.
[http://dx.doi.org/10.1007/s00253-016-7457-0] [PMID: 27067587]
[111]
Wei, Y. Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr. J. Biotechnol., 2012, 11(37), 9094-9101.
[112]
Bian, G.; Yuan, Y.; Tao, H.; Shi, X.; Zhong, X.; Han, Y.; Fu, S.; Fang, C.; Deng, Z.; Liu, T. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol. J., 2017, 12(4)1600697
[http://dx.doi.org/10.1002/biot.201600697] [PMID: 28217906]
[113]
Jahn, L.; Schafhauser, T.; Wibberg, D.; Rückert, C.; Winkler, A.; Kulik, A.; Weber, T.; Flor, L.; van Pée, K.H.; Kalinowski, J.; Ludwig-Müller, J.; Wohlleben, W. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin. J. Biotechnol., 2017, 257(257), 233-239.
[http://dx.doi.org/10.1016/j.jbiotec.2017.06.410] [PMID: 28647529]
[114]
El-Moslamy, S.H.; Elkady, M.F.; Rezk, A.H.; Abdel-Fattah, Y.R. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci. Rep., 2017, 7, 45297.
[http://dx.doi.org/10.1038/srep45297] [PMID: 28349997]
[115]
Luo, H.; Xu, D.; Xie, R.; Zhang, X.; Wang, J.; Dong, X.; Lai, D.; Zhou, L.; Liu, Y. Research article enhancement of botrallin and TMC-264 production in liquid culture of endophytic fungus Hyalodendriella sp. Ponipodef12 after treatments with metal ions. Electron. J. Biotechnol., 2016, 24, 12-20.
[http://dx.doi.org/10.1016/j.ejbt.2016.09.002]
[116]
Gracida-Rodríguez, J.; Gómez-Valadez, A.; Tovar-Jiménez, X.; Amaro-Reyes, A.; Arana-Cuenca, A.; Zamudio-Pérez, E. Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus. Biologia, 2017, 72(12), 1416-1421.
[http://dx.doi.org/10.1515/biolog-2017-0177]
[117]
Hewage, R.T.; Aree, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry, 2014, 108, 87-94.
[http://dx.doi.org/10.1016/j.phytochem.2014.09.013] [PMID: 25310919]
[118]
Soliman, S.S.M.; Raizada, M.N. Darkness: a crucial factor in fungal taxol production. Front. Microbiol., 2018, 9, 353.
[http://dx.doi.org/10.3389/fmicb.2018.00353] [PMID: 29552002]
[119]
Venugopalan, A.; Srivastava, S. Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour. Technol., 2015, 188(z2), 251-257.
[http://dx.doi.org/10.1016/j.biortech.2014.12.106] [PMID: 25603728]
[120]
Vasanthakumari, M.M.; Jadhav, S.S.; Sachin, N.; Vinod, G.; Shweta, S.; Manjunatha, B.L.; Kumara, P.M.; Ravikanth, G.; Nataraja, K.N.; Uma Shaanker, R. Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J. Microbiol. Biotechnol., 2015, 31(10), 1629-1639.
[http://dx.doi.org/10.1007/s11274-015-1916-0] [PMID: 26289161]
[121]
Soliman, S.S.M.; Mosa, K.A.; El-Keblawy, A.A.; Husseiny, M.I. Exogenous and endogenous increase in fungal GGPP increased fungal Taxol production. Appl. Microbiol. Biotechnol., 2017, 101(20), 7523-7533.
[http://dx.doi.org/10.1007/s00253-017-8509-9] [PMID: 28918530]
[122]
Xu, Y.M.; Mafezoli, J.; Oliveira, M.C.; U’Ren, J.M.; Arnold, A.E.; Gunatilaka, A.A. U’Ren, J.M.; Arnold, A.E.; Gunatilaka, A.A. Anteaglonialides A-F and Palmarumycins CE(1)-CE(3) from Anteaglonium sp. FL0768, a fungal endophyte of the spikemoss Selaginella arenicola. J. Nat. Prod., 2015, 78(11), 2738-2747.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00717] [PMID: 26539727]
[123]
Mafezoli, J.; Xu, Y.M.; Hilário, F.; Freidhof, B.; Espinosa-Artiles, P.; Dos Santos, L.C.; de Oliveira, M.C.F.; Gunatilaka, A.A.L. Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid. Phytochem. Lett., 2018, 28, 157-163.
[http://dx.doi.org/10.1016/j.phytol.2018.10.011] [PMID: 31354886]
[124]
Sharma, V.; Singamaneni, V.; Sharma, N.; Kumar, A.; Arora, D.; Kushwaha, M.; Bhushan, S.; Jaglan, S.; Gupta, P. Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorg. Med. Chem. Lett., 2018, 28(12), 2217-2221.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.018] [PMID: 29759727]
[125]
Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv., 2014, 32(6), 1180-1204.
[http://dx.doi.org/10.1016/j.biotechadv.2014.03.001] [PMID: 24651031]
[126]
Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol., 2016, 120(6-7), 873-883.
[http://dx.doi.org/10.1016/j.funbio.2016.04.003] [PMID: 27268247]
[127]
Soliman, S.S.M.; Raizada, M.N. Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front. Microbiol., 2013, 4(1), 3.
[http://dx.doi.org/10.3389/fmicb.2013.00003] [PMID: 23346084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy