Antioxidant and Enzyme Inhibitory Properties of Mangifera indica leaf Extract

Author(s): Sainiara Begum, Archana Banerjee, Bratati De*

Journal Name: The Natural Products Journal

Volume 10 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aims: The foliar residues of Mangiferaindica tree are usually burned or used for soil amelioration except nominal uses as fodder.

Methods: To add value to this agricultural waste, extracts of the leafy residues of M. indica were studied to analyze their potential as antioxidants and to inhibit the enzymes related to the management of diabetes, Alzheimer’s Disease (AD), hepatic disorders as well as to identify important phytochemicals present in the extracts.

Results: Results depicts that the leaves have notable bioactivities. The methanol extract (ME) showed much potential than ethyl acetate fraction after hydrolysis (HME) against α-amylase and α- glucosidase. The activity against the enzyme β-glucuronidase was also higher than that of the commercial β- glucuronidase inhibitor. The extract after hydrolysis showed better antioxidant and acetylcholinesterase inhibitory activities. Detection of important phytochemicals such as chrysin and myricetn, alizarin, arbutin, hydroquinone, tyrosol, taxifolin, kaempferol, mangiferin, and the vitamin alpha tocophereol, in addition to a number of organic acids, amino acids, fatty acids, sugars and polyols by GC-MS and HPTLC based analysis of the extract of M. indica leaf, also suggest the use of the leaves as sources of these important phytochemicals.

Conclusion: More concisely HME with more number of detected metabolites found better to be used against oxidative stress as well as enzymes related to neural and liver disorders than that of ME.

Keywords: Mango leaf, phytochemicals, bioactivity, antioxidants, enzymes, Mangifera indica.

[1]
Karjalainen, E.; Sarjala, T.; Raitio, H. Promoting human health through forests: Overview and major challenges. Environ. Health Prev. Med., 2010, 15(1), 1-8.
[http://dx.doi.org/10.1007/s12199-008-0069-2] [PMID: 19568838]
[2]
Etound, C.B.; Kuate, D.; Ngondi, J.L.; Oben, J. Anti-amylase, anti-lipase and antioxidant effects of aqueous extracts of some Cameroonian spices. J. Nat. Prod., 2010, 3, 165-171.
[3]
Mosquera, O.M.; Correra, Y.M.; Nino, J. Antioxidant activity of plants extracts from Columbian flora. Rev. Bras. Farmacogn., 2009, 19, 382-387.
[http://dx.doi.org/10.1590/S0102-695X2009000300008]
[4]
Das, S.; Das, S.; De, B. In vitro inhibition of key enzymes related to diabetes by the aqueous extracts of some fruits of West Bengal, India. Curr. Nutr. Food Sci., 2012, 8(1), 19-24.
[http://dx.doi.org/10.2174/157340112800269614]
[5]
Begum, S.; Acharya, J.; Banerjee, A.; De, B. Chemical composition and in vitro study for analysis of potential neuroprotective and antidiabetic activity in Mimusops elengi L. Int. J. Pharmacog. Phytochem. Res., 2015, 7(4), 701-706.
[6]
Karak, S.; Nag, G.; De, B. Metabolite profile and β-glucuronidase inhibitory property of three species of Swertia. Rev. Bras. Farmacogn., 2017, 27(1), 105-111.
[http://dx.doi.org/10.1016/j.bjp.2016.07.007]
[7]
Nag, G.; Das, S.; Das, S.; Mandal, S.; De, B. Antioxidant, anti-acetylcholinesterase, and anti-glycosidase properties of three species of Swertia, their xanthones and amarogentin: A comparative study. Pharmacogn. J., 2015, 7(2), 117-123.
[http://dx.doi.org/10.5530/pj.2015.2.6]
[8]
El-Zohgbi, M.; Mostafa, G.A. Characterization of the geographic origin of mango pulp from Egypt, Brazil and Puerto Rico by ICP-MS. Zagazig J. Agric. Res., 2002, 28, 629-639.
[9]
Das, S.P.; Ravindran, R.; Deka, D.; Jawed, M.; Das, D.; Goyal, A. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes. Prep. Biochem. Biotechnol., 2013, 43(7), 717-734.
[http://dx.doi.org/10.1080/10826068.2013.773342] [PMID: 23768115]
[10]
Rashad, M.M.; Moharib, S.A.; Jwanny, E.W. Yeast conversion of mango waste or methanol to single cell protein and other metabolites. Biol. Wastes, 1990, 32(4), 277-284.
[http://dx.doi.org/10.1016/0269-7483(90)90059-2]
[11]
Tamayo, D.; Mari, E.; Gonzalez, S.; Guevara, M.; Garrido, G.; Delgado, R.E.A. Vimang as natural antioxidant supplementation in patients with malignant tumors. Minerva Med., 2001, 92, 95-97.
[12]
Núñez-Sellés, A.J.; Delgado-Hernández, R.; Garrido-Garrido, G.; García-Rivera, D.; Guevara-García, M.; Pardo-Andreu, G.L. The paradox of natural products as pharmaceuticals. Experimental evidences of a mango stem bark extract. Pharmacol. Res., 2007, 55(5), 351-358.
[http://dx.doi.org/10.1016/j.phrs.2007.01.004] [PMID: 17314051]
[13]
Soong, Y.; Barlow, J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem., 2004, 88(3), 411-417.
[http://dx.doi.org/10.1016/j.foodchem.2004.02.003]
[14]
Masibo, M.; He, Q. Mango bioactive compounds and related nutraceutical properties: A review. Food Rev. Int., 2009, 25, 346-370.
[http://dx.doi.org/10.1080/87559120903153524]
[15]
Morsi, R.M.Y.; El-Tahan, N.R.; El-Hadad, A.M.A. Effect of aqueous extract Mangifera indica leaves, as functional foods. J. Appl. Sci. Res., 2010, 6(6), 712-721.
[16]
Severi, J.A.; Lima, Z.P.; Kushima, H.; Brito, A.R.; Santos, L.C.; Vilegas, W.; Hiruma-Lima, C.A. Polyphenols with antiulcerogenic action from aqueous decoction of mango leaves (Mangifera indica L.). Molecules, 2009, 14(3), 1098-1110.
[http://dx.doi.org/10.3390/molecules14031098] [PMID: 19305363]
[17]
Fernandez-Ponce, M.T.; Casas, L.; Mantell, C.; Rodrignez, M.; Ossa, E.M. Extraction of antioxidant compounds from different varieties of Mangifera indica L. leaves using green technologies. J. Supercrit. Fluids, 2012, 2012(72), 168-175.
[http://dx.doi.org/10.1016/j.supflu.2012.07.016]
[18]
Sangeetha, K.N.; Sujatha, S.; Muthusamy, V.S.; Anand, S.; Nithya, N.; Velmurugan, D.; Balakrishnan, A.; Lakshmi, B.S. 3beta-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Biochim. Biophys. Acta, 2010, 1800(3), 359-366.
[http://dx.doi.org/10.1016/j.bbagen.2009.12.002] [PMID: 20026188]
[19]
Oh, M.H.; Houghton, P.J.; Whang, W.K.; Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine, 2004, 11(6), 544-548.
[http://dx.doi.org/10.1016/j.phymed.2004.03.001] [PMID: 15500267]
[20]
Bernfeld, P. Amylase α and β. Methods in Enzymology; Academic Press: New York, 1995, Vol. 1, pp. 149-158.
[21]
Kwon, Y.I.; Apostolidis, E.; Shetty, K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour. Technol., 2008, 99(8), 2981-2988.
[http://dx.doi.org/10.1016/j.biortech.2007.06.035] [PMID: 17706416]
[22]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[23]
Kim, D.H.; Shim, S.B.; Kim, N.J.; Jang, I.S. β-glucuronidase-inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol. Pharm. Bull., 1999, 22(2), 162-164.
[http://dx.doi.org/10.1248/bpb.22.162] [PMID: 10077435]
[24]
Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod., 2001, 64(7), 892-895.
[http://dx.doi.org/10.1021/np0100845] [PMID: 11473417]
[25]
Martinez, C.A.; Loureiro, M.E.; Oliva, M.A.; Maestri, M. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci., 2001, 160(3), 505-515.
[http://dx.doi.org/10.1016/S0168-9452(00)00418-0] [PMID: 11166438]
[26]
Banerjee, A.; Dasgupta, N.; De, B. In-vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem., 2005, 90(4), 727-733.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.033]
[27]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[28]
Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. A new, convenient method for determination of mangiferin, an anti-diabetic compound, in Mangifera indica L. J. Planar Chromatogr. Mod. TLC, 2007, 20(5), 317-320.
[http://dx.doi.org/10.1556/JPC.20.2007.5.1]
[29]
Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem., 2009, 81(24), 10038-10048.
[http://dx.doi.org/10.1021/ac9019522] [PMID: 19928838]
[30]
Eichler, H.G.; Korn, A.; Gasic, S.; Pirson, W.; Businger, J. The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal subjects and Type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1984, 26(4), 278-281.
[http://dx.doi.org/10.1007/BF00283650] [PMID: 6376235]
[31]
Toeller, M. α-Glucosidase inhibitors in diabetes: Efficacy in NIDDM subjects. Eur. J. Clin. Invest., 1994, 24(Suppl. 3), 31-35.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02253.x] [PMID: 8001625]
[32]
Francis, P. Targeting cell death in dementia. Alzheimer Dis. Assoc. Disord., 2006, 20(2)(Suppl. 1), S3-S7.
[http://dx.doi.org/10.1097/01.wad.0000213803.82058.46] [PMID: 16772754]
[33]
Hashimotto, K.; Saito, H.; Ohsawa, R. Glycopolymeric inhibitors of β –glucuronidase. configurational effects of hydroxyl groups in pendant glyco-units in polymers upon inhibition of β-glucuronidase. J. Polym. Sci. A Polym. Chem., 2006, 44(16), 4895-4903.
[http://dx.doi.org/10.1002/pola.21584]
[34]
Sekikawa, C.; Kurihara, H.; Takahashi, K.; Takahashi, K. Inhibition of β- glucuronidase by extracts of Chondriacrassicaulis. Bul. Fisheries Sci. Hokkaido Univ., 2002, 53(1), 27-30.
[35]
Evenepoel, P.; Bammens, B.; Verbeke, K.; Vanrenterghem, Y. Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: A pilot study. Kidney Int., 2006, 70(1), 192-198.
[http://dx.doi.org/10.1038/sj.ki.5001523] [PMID: 16688114]
[36]
Triggle, D.J.; Mitchell, J.M.; Filler, R. The pharmacology of physostigmine. CNS Rev., 1998, 4(2), 87-136.
[http://dx.doi.org/10.1111/j.1527-3458.1998.tb00059.x]
[37]
Kim, D.H.; Jin, Y.H.; Park, J.B.; Kobashi, K. Silymarin and its components are inhibitors of β-glucuronidase. Biol. Pharm. Bull., 1994, 17(3), 443-445.
[http://dx.doi.org/10.1248/bpb.17.443] [PMID: 8019514]
[38]
Das, S.; Dutta, M.; Choudhury, K.; De, B. Metabolomic and chemometric study of Achrassapota L. fruit extracts for identification of metabolites contributing to the inhibition of α-amylase and α-glucosidase. Eur. Food Res. Technol., 2016, 242(5), 733-743.
[http://dx.doi.org/10.1007/s00217-015-2581-0]
[39]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[40]
Yi, T.; Chen, Q.; He, X.; So, S.; Lo, Y.; Fan, L.; Xu, J.; Tang, Y.; Zhang, J.; Zhao, Z.; Chen, H. Chemical quantification and antioxidant assay of four active components in Ficus hirta root using UPLC-PAD-MS fingerprinting combined with cluster analysis. Chem. Cent. J., 2013, 7(1), 115.
[http://dx.doi.org/10.1186/1752-153X-7-115] [PMID: 23835498]
[41]
Kontush, A.; Finckh, B.; Karten, B.; Kohlschütter, A.; Beisiegel, U. Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein. J. Lipid Res., 1996, 37(7), 1436-1448.
[PMID: 8827516]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 4
Year: 2020
Published on: 20 August, 2020
Page: [384 - 394]
Pages: 11
DOI: 10.2174/2210315509666190626124539
Price: $25

Article Metrics

PDF: 32
HTML: 1