Psoralen Derivatives: Recent Advances of Synthetic Strategy and Pharmacological Properties

Author(s): Joazaizulfazli Jamalis*, Faten Syahira Mohamed Yusof, Subhash Chander, Roswanira Abd. Wahab, Deepak P. Bhagwat, Murugesan Sankaranarayanan, Faisal Almalki, Taibi Ben Hadda*

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
Formerly Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents

Volume 19 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.

Keywords: Biological activity, chemotherapeutic agents, furan ring, heterocyclic compound, pharmacological properties, psoralen derivatives.

[1]
Ji, L.; Lu, D.; Cao, J.; Zheng, L.; Peng, Y.; Zheng, J. Psoralen, a mechanism-based inactivator of CYP2B6. Chem. Biol. Interact., 2015, 240, 346-352.
[http://dx.doi.org/10.1016/j.cbi.2015.08.020] [PMID: 26335194]
[2]
Mohammadparast, B.; Rustaiee, A.R.; Rasouli, M.; Zardari, S.; Agrawal, V. In vitro enhancement of psoralen as an important anticancer compound in Psoralea corylifolia through precursor feeding. Pharm. Biol., 2015, 53(5), 735-738.
[http://dx.doi.org/10.3109/13880209.2014.942786] [PMID: 25331001]
[3]
Siva, G.; Sivakumar, S.; Prem Kumar, G.; Vigneswaran, M.; Vinoth, S.; Muthamil Selvan, A.; Jayabalan, N. Optimization of elicitation condition with jasmonic acid, characterization and antimicrobial activity of psoralen from direct regenerated plants of Psoralea corylifolia L. Biocatal. Agric. Biotechnol., 2015, 4, 624-631.
[http://dx.doi.org/10.1016/j.bcab.2015.10.012]
[4]
Marzaro, G.; Guiotto, A.; Borgatti, M.; Finotti, A.; Gambari, R.; Breveglieri, G.; Chilin, A. Psoralen derivatives as inhibitors of NF-κB/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J. Med. Chem., 2013, 56(5), 1830-1842.
[http://dx.doi.org/10.1021/jm3009647] [PMID: 23414143]
[5]
Ben Hadda, T.; Khardli, F.A.; Mimouni, M.; Daoudi, M.; Kerbal, A.; Salgado-Zamora, H.; Gandhare, H.; Parvez, N.A. Impact of geometric parameters, charge and lipophilicity on bioactivity of armed quinoxaline, benzothiaole and benzothiazine: POM analyses of antibacterial and antifungal activity. Sulfur Silicon Relat. Elem., 2014, 189(6), 753-761.
[http://dx.doi.org/10.1080/10426507.2013.855763]
[6]
Ben Hadda, T.; Srivastava, S.; Das, B.; Salgado-Zamora, H.; Shaheen, U.; Bader, A.; Naseer, M.M. POM analyses of antimicrobial activity of some 2,3-armed 4,5,6,7-tetrahydro-1-benzothiophenes: favourable and unfavourable physicochemical parameters in design of antibacterial and mycolytic agents. Med. Chem. Res., 2014, 23(2), 995-1003.
[http://dx.doi.org/10.1007/s00044-013-0707-0]
[7]
Ben Hadda, T.; Ahmad, M.; Sultana, S.; Shaheen, U.; Bader, A.; Srivastava, S.; Das, B.; Salgado-Zamora, H. POM analyses for antimicrobial evaluation of thienopyrimidinones derivatives: A rapid method for drug design. Res. Chem. Intermed., 2014, 23(1), 16-24.
[8]
Ben Hadda, T.; Fergoug, T.; Warad, I. POM theoretical calculations and experimental verification of antibacterial potential of 5-hydroxy-4-(substituted-amino)-2(5H)-furanones. Res. Chem. Intermed., 2013, 39(5), 1963-1971.
[http://dx.doi.org/10.1007/s11164-012-0729-0]
[9]
Jarrahpour, A.; Fathi, J.; Mimouni, M.; Ben Hadda, T.; Sheikh, J.; Chohan, A.H.; Parvez, A. Petra, osiris and molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo schiff bases. Med. Chem. Res., 2012, 21(8), 1984-1990.
[http://dx.doi.org/10.1007/s00044-011-9723-0]
[10]
Juneja, H.; Panchbhai, D.; Sheikh, J.; Ingle, V.; Ben Hadda, T. Synthesis, antibacterial screening and POM analyses of novel bis-isoxazolyl/pyrazoyl-1,3-diols. Med. Chem. Res., 2014, 23(3), 1537-1547.
[http://dx.doi.org/10.1007/s00044-013-0755-5]
[11]
Lahsasni, S.; Ben Hadda, T.; Masand, V.; Pathan, N.B.; Parvez, A.; Warad, I.; Shaheen, U.; Bader, A.; Aljofan, M. POM analyses of Raltegravir derivatives: A new reflection enlightening the mechanism of HIV-integrase inhibition. Res. Chem. Intermed., 2015, 41(8), 5121-5136.
[http://dx.doi.org/10.1007/s11164-014-1616-7]
[12]
Mabkhot, Y.N.; Arfan, M.; Zgou, H.; Genc, Z.K.; Genc, M.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. How to improve antifungal bioactivity: POM and DFT study of some chiral amides derivatives of diacetyl-L-tartaric acid and amines. Res. Chem. Intermed., 2016, 42(12), 8055-8068.
[http://dx.doi.org/10.1007/s11164-016-2578-8]
[13]
Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N.N.E.; Al-Showiman, S.; Kheder, N.A.; Wadood, A.; Rauf, A.; Bawazeer, S.; Hadda, T.B. Antimicrobial activity of some novel armed thiophene derivatives and petra/osiris/molinspiration (POM) analyses. Molecules, 2016, 21(2), 222-238.
[http://dx.doi.org/10.3390/molecules21020222] [PMID: 26901173]
[14]
Mabkhot, Y.N.; Aldawsari, F.D.; Al-Showiman, S.S.; Barakat, A.; Hadda, T.B.; Mubarak, M.S.; Naz, S.; Ul-Haq, Z.; Rauf, A. Synthesis, bioactivity, molecular docking and POM analyses of novel substituted thieno[2,3-b]thiophenes and related congeners. Molecules, 2015, 20(2), 1824-1841.
[http://dx.doi.org/10.3390/molecules20021824] [PMID: 25621424]
[15]
Mabkhot, Y.N.; Barakat, A.; Yousuf, S.; Choudhary, M.I.; Frey, W.; Ben Hadda, T.; Mubarak, M.S. Substituted thieno[2,3-b]thiophenes and related congeners: Synthesis, β-glucuronidase inhibition activity, crystal structure, and POM analyses. Bioorg. Med. Chem., 2014, 22(23), 6715-6725.
[http://dx.doi.org/10.1016/j.bmc.2014.08.014] [PMID: 25245672]
[16]
Mahajan, D.T.; Masand, V.H.; Patil, K.N.; Ben Hadda, T.; Jawarkar, R.D.; Thakur, S.D.; Rastija, V. CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorg. Med. Chem. Lett., 2012, 22(14), 4827-4835.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.115] [PMID: 22732694]
[17]
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Ur-Rehman, M.; Warad, I.; Ben Hadda, T.; Patel, S. POM analysis of phytotoxic agents from Pistacia integerrima Stewart. Curr. Bioact. Compd., 2015, 11, 231-238.
[http://dx.doi.org/10.2174/1573407211666151012191902]
[18]
Sajid, Z.; Ahmad, M.; Aslam, S.; Ashfaq, U.A.; Zahoor, A.F.; Saddique, F.A.; Parvez, M.; Hameed, A.; Sultan, S.; Zgou, H.; Ben Hadda, T. Novel armed pyrazolobenzothiazine derivatives: Synthesis, x-ray crystal structure and POM analyses of biological activity against drug resistant clinical isolate of Staphylococcus aureus. Pharm. Chem. J., 2016, 50(3), 172-180.
[http://dx.doi.org/10.1007/s11094-016-1417-y]
[19]
Tighadouini, S.; Radi, S.; Sirajuddin, M.; Akkurt, M.; Ozdemir, N.; Ahmad, M.; Mabkhot, Y.N.; Ben Hadda, T. In vitro antifungal, anticancer activities and POM analyses of a novel bioactive schiff base, 4-[(E)-furan-2-ylmethylidene]aminophenol: Synthesis, characterization and crystal structure. J. Chem. Soc. Pak., 2016, 38(1), 253-259.
[20]
Youssoufi, M.H.; Ben Hadda, T.; Warad, I.; Naseer, M.M.; Mabkhot, Y.N.; Bader, A. POM analyses of anti-kinase activity of thirteen peptide alkaloids extracted from Zizyphus species. Med. Chem. Res., 2015, 24(1), 267-274.
[http://dx.doi.org/10.1007/s00044-014-1117-7]
[21]
Youssoufi, M.H.; Sahu, P.K.; Agarwal, D.D.; Ahmad, M.; Messali, M.; Lahsasni, S.; Ben Hadda, T. POM analyses of antimicrobial activity of 4H-pyrimido[2,1-b]benzothiazole, pyrazole, and benzylidene derivatives of curcumin. Med. Chem. Res., 2014, 24(6), 2381-2392.
[http://dx.doi.org/10.1007/s00044-014-1297-1]
[22]
Schneider, K.; Wronka-Edwards, L.; Leggett-Embrey, M.; Walker, E.; Sun, P.; Ondov, B.; Wyman, T.H.; Rosovitz, M.J.; Bohn, S.S.; Burans, J.; Kochel, T. Psoralen inactivation of viruses: A process for the safe manipulation of viral antigen and nucleic acid. Viruses, 2015, 7(11), 5875-5888.
[http://dx.doi.org/10.3390/v7112912] [PMID: 26569291]
[23]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.F.S.A.; Oliveira-Campos, A.M.F.; Rodrigues, L.M.; Esteves, A.P. Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg. Med. Chem., 2013, 21(17), 5047-5053.
[http://dx.doi.org/10.1016/j.bmc.2013.06.049] [PMID: 23886808]
[24]
Parsons, B.J. Psoralen photochemistry. Photochem. Photobiol., 1980, 32(6), 813-821.
[http://dx.doi.org/10.1111/j.1751-1097.1980.tb04061.x] [PMID: 7005917]
[25]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[http://dx.doi.org/10.1021/jm0580149] [PMID: 16190766]
[26]
Yadav, G.D.; Ajgaonkar, N.P.; Varma, A. Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in pechmann condensation of resorcinol with ethyl acetoacetate. J. Catal., 2012, 292, 99-110.
[http://dx.doi.org/10.1016/j.jcat.2012.05.004]
[27]
Chattopadhyay, A.; Mamdapur, V.R.; Chadha, M.S. A convenient synthesis of psoralen. Indian J. Chem., 1983, 22, 1221-1223.
[28]
Santana, L.; Uriarte, E.; Roleira, F.; Milhazes, N.; Borges, F. Furocoumarins in medicinal chemistry. Synthesis, natural occurrence and biological activity. Curr. Med. Chem., 2004, 11(24), 3239-3261.
[http://dx.doi.org/10.2174/0929867043363721] [PMID: 15579011]
[29]
Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev., 2006, 5, 293-308.
[http://dx.doi.org/10.1007/s11101-006-9040-2]
[30]
Lee, J.S. Recent advances in the synthesis of 2-pyrones. Mar. Drugs, 2015, 13(3), 1581-1620.
[http://dx.doi.org/10.3390/md13031581] [PMID: 25806468]
[31]
Nagorichna, I.V.; Dubovik, I.P.; Garazd, M.M.; Khilya, V.P. Modified coumarins. 10. Synthesis of substituted 2-(7-Oxofuro[3,2-g]chromen-6-yl)acetic acids. Chem. Nat. Compd., 2003, 39, 253-261.
[http://dx.doi.org/10.1023/A:1025466317733]
[32]
Hashem, S.E.N. Synthesis and photooxygenation of angular furocoumarins: isopsedopsoralen and allopsoralen. Res. Chem. Intermed., 2015, 41, 1591-1600.
[http://dx.doi.org/10.1007/s11164-013-1295-9]
[33]
Chen, C.Y.; Sun, J.G.; Liu, F.Y.; Fung, K.P.; Wu, P.; Huang, Z.Z. Synthesis and biological evaluation of glycosylated psoralen derivatives. Tetrahedron, 2012, 68, 2598-2606.
[http://dx.doi.org/10.1016/j.tet.2012.01.090]
[34]
Valizadeh, H.; Shockravi, A. Microwave-assisted claisen rearrangement. Application to the synthesis of angelicin derivatives. J. Heterocycl. Chem., 2006, 43, 1-3.
[http://dx.doi.org/10.1002/jhet.5570430336]
[35]
Zareai, Z.; Khoobi, M.; Ramazani, A.; Foroumadi, A.; Souldozi, A. Synthesis of functionalized furo[3,2-c]coumarins via a one-pot oxidative pseudo three-component reaction in poly (ethylene glycol). Tetrahedron Lett., 2012, 68, 6721-6726.
[http://dx.doi.org/10.1016/j.tet.2012.05.112]
[36]
Jia, C.; Piao, D.; Kitamura, T.; Fujiwara, Y. New method for preparation of coumarins and quinolinones via Pd-catalyzed intramolecular hydroarylation of C-C triple bonds. J. Org. Chem., 2000, 65(22), 7516-7522.
[http://dx.doi.org/10.1021/jo000861q] [PMID: 11076610]
[37]
Bisagni, E. Synthesis of psoralens and analogues. J. Photochem. Photobiol. B, 1992, 14(1-2), 23-46.
[http://dx.doi.org/10.1016/1011-1344(92)85081-5] [PMID: 1432382]
[38]
Traven, V.F.; Sakharuk, I.I.; Kravchenko, D.V.; Ivashchenko, A.V. Synthon in the synthesis of 6-subsitituted angelicin. Chem. Heterocycl. Compd., 2001, 37(3), 312-322.
[http://dx.doi.org/10.1023/A:1017546730492]
[39]
Larbat, R.; Hehn, A.; Hans, J.; Schneider, S.; Jugdé, H.; Schneider, B.; Matern, U.; Bourgaud, F. Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis. J. Biol. Chem., 2009, 284(8), 4776-4785.
[http://dx.doi.org/10.1074/jbc.M807351200] [PMID: 19098286]
[40]
Holmes, O.W. The evolution of photochemotherapy with psoralens U-VA (PUVA). J. Org. Chem., 2000, 14, 3-22.
[41]
Ropp, S.; Guy, J.; Berl, V.; Bischoff, P.; Lepoittevin, J.P. Synthesis and photocytotoxic activity of new alpha-methylene-gamma-butyrolactone-psoralen heterodimers. Bioorg. Med. Chem., 2004, 12(13), 3619-3625.
[http://dx.doi.org/10.1016/j.bmc.2004.04.019] [PMID: 15186846]
[42]
Eun, J.S.; Kim, K.S.; Kim, H.N.; Park, S.A.; Ma, T.Z.; Lee, K.A.; Kim, D.K.; Kim, H.K.; Kim, I.S.; Jung, Y.H.; Zee, O.P.; Yoo, D.J.; Kwak, Y.G. Synthesis of psoralen derivatives and their blocking effect of hKv1.5 channel. Arch. Pharm. Res., 2007, 30(2), 155-160.
[http://dx.doi.org/10.1007/BF02977688] [PMID: 17366735]
[43]
Guo, J.; Weng, X.; Wu, H.; Li, Q.; Bi, K. Antioxidants from a Chinese medicinal herb -Psoralea corylifolia L. Food Chem., 2005, 91, 287-292.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.029]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2020
Published on: 02 September, 2020
Page: [222 - 239]
Pages: 18
DOI: 10.2174/1871523018666190625170802

Article Metrics

PDF: 39
HTML: 2