NMR Assisted Antimicrobial Peptide Designing: Structure Based Modifications and Functional Correlation of a Designed Peptide VG16KRKP

Author(s): Karishma Biswas, Humaira Ilyas, Aritreyee Datta, Anirban Bhunia*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 9 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Antimicrobial Peptides (AMPs), within their realm incorporate a diverse group of structurally and functionally varied peptides, playing crucial roles in innate immunity. Over the last few decades, the field of AMP has seen a huge upsurge, mainly owing to the generation of the so-called drug resistant ‘superbugs’ as well as limitations associated with the existing antimicrobial agents. Due to their resilient biological properties, AMPs can very well form the sustainable alternative for nextgeneration therapeutic agents. Certain drawbacks associated with existing AMPs are, however, issues of major concern, circumventing which are imperative. These limitations mainly include proteolytic cleavage and hence poor stability inside the biological systems, reduced activity due to inadequate interaction with the microbial membrane, and ineffectiveness because of inappropriate delivery among others. In this context, the application of naturally occurring AMPs as an efficient prototype for generating various synthetic and designed counterparts has evolved as a new avenue in peptide-based therapy. Such designing approaches help to overcome the drawbacks of the parent AMPs while retaining the inherent activity. In this review, we summarize some of the basic NMR structure based approaches and techniques which aid in improving the activity of AMPs, using the example of a 16-residue dengue virus fusion protein derived peptide, VG16KRKP. Using first principle based designing technique and high resolution NMR-based structure characterization we validate different types of modifications of VG16KRKP, highlighting key motifs, which optimize its activity. The approaches and designing techniques presented can support our peers in their drug development work.

Keywords: Antimicrobial peptides, superbugs, de novo peptide designing, NMR spectroscopy, trNOESY, VG16KRKP.

Fleming, A. On a remarkable bacteriolytic element found in tissues and secretions. Royal Society of London,, 1922, 93, 306-317.http://dx.doi.org/https://doi.org/10.1098/rspb.1922.0023
Bhunia, A.; Mohanram, H.; Domadia, P.N.; Torres, J.; Bhattacharjya, S. Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J. Biol. Chem., 2009, 284(33), 21991-22004.
[http://dx.doi.org/10.1074/jbc.M109.013573] [PMID: 19520860]
Snyder, D.S.; McIntosh, T.J. The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry, 2000, 39(38), 11777-11787.
[http://dx.doi.org/10.1021/bi000810n] [PMID: 10995246]
Capparelli, R.; Romanelli, A.; Iannaccone, M.; Nocerino, N.; Ripa, R.; Pensato, S.; Pedone, C.; Iannelli, D. Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo. PLoS One, 2009, 4(9)e7191
[http://dx.doi.org/10.1371/journal.pone.0007191] [PMID: 19784377]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
Hancock, R.E. Peptide antibiotics. Lancet, 1997, 349(9049), 418-422.
[http://dx.doi.org/10.1016/S0140-6736(97)80051-7] [PMID: 9033483]
Maróti, G.; Kereszt, A.; Kondorosi, E.; Mergaert, P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol., 2011, 162(4), 363-374.
[http://dx.doi.org/10.1016/j.resmic.2011.02.005] [PMID: 21320593]
Hancock, R.E.; Patrzykat, A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002, 2(1), 79-83.
[http://dx.doi.org/10.2174/1568005024605855] [PMID: 12462155]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
LaRock, C.N.; Nizet, V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3047-3054.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.010] [PMID: 25701232]
Malmsten, M. Antimicrobial peptides. Ups. J. Med. Sci., 2014, 119(2), 199-204.
[http://dx.doi.org/10.3109/03009734.2014.899278] [PMID: 24758244]
Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3078-3088.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.017] [PMID: 25724815]
Haney, E.F. Chapter 1 NMR of antimicrobial peptides. Annu. Rep. NMR Spectrosc., 2009, 65, 1-51.
Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta, 1999, 1462(1-2), 11-28.
[http://dx.doi.org/10.1016/S0005-2736(99)00198-4] [PMID: 10590300]
Matsuzaki, K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta, 1998, 1376(3), 391-400.
[http://dx.doi.org/10.1016/S0304-4157(98)00014-8] [PMID: 9804997]
Ramamoorthy, A. Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights. Solid State Nucl. Magn. Reson., 2009, 35(4), 201-207.
[http://dx.doi.org/10.1016/j.ssnmr.2009.03.003] [PMID: 19386477]
Wang, G. NMR of membrane-associated peptides and proteins. Curr. Protein Pept. Sci., 2008, 9(1), 50-69.
[http://dx.doi.org/10.2174/138920308783565714] [PMID: 18336323]
Blondelle, S.E.; Lohner, K.; Aguilar, M. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim. Biophys. Acta, 1999, 1462(1-2), 89-108.
[http://dx.doi.org/10.1016/S0005-2736(99)00202-3] [PMID: 10590304]
Raghuraman, H.; Chattopadhyay, A. Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys. J., 2004, 87(4), 2419-2432.
[http://dx.doi.org/10.1529/biophysj.104.043596] [PMID: 15454440]
Epand, R.F.; Ramamoorthy, A.; Epand, R.M. Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept. Lett., 2006, 13(1), 1-5.
[PMID: 16454662]
Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J. Biol. Chem., 2005, 280(40), 33960-33967.
[http://dx.doi.org/10.1074/jbc.M507042200] [PMID: 16043484]
Hancock, R.E.; Falla, T.; Brown, M. Cationic bactericidal peptides. Adv. Microb. Physiol., 1995, 37, 135-175.
[http://dx.doi.org/10.1016/S0065-2911(08)60145-9] [PMID: 8540420]
Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.; Cooper, M.A. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect. Dis., 2016, 2(6), 442-450.
[http://dx.doi.org/10.1021/acsinfecdis.6b00045] [PMID: 27331141]
Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother., 2007, 51(4), 1398-1406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
Rosenfeld, Y.; Lev, N.; Shai, Y. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry, 2010, 49(5), 853-861.
[http://dx.doi.org/10.1021/bi900724x] [PMID: 20058937]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
Haney, E.F.; Hunter, H.N.; Matsuzaki, K.; Vogel, H.J. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim. Biophys. Acta, 2009, 1788(8), 1639-1655.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.002] [PMID: 19272309]
Bechinger, B.; Zasloff, M.; Opella, S.J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci., 1993, 2(12), 2077-2084.
[http://dx.doi.org/10.1002/pro.5560021208] [PMID: 8298457]
Lee, D.K.; Bhunia, A.; Kotler, S.A.; Ramamoorthy, A. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study. Biochemistry, 2015, 54(10), 1897-1907.
[http://dx.doi.org/10.1021/bi501418m] [PMID: 25715195]
Melo, M.N.; Ferre, R.; Castanho, M.A. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol., 2009, 7(3), 245-250.
[http://dx.doi.org/10.1038/nrmicro2095] [PMID: 19219054]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[http://dx.doi.org/10.1021/cb1001558] [PMID: 20698568]
Bhattacharjya, S. De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs. Curr. Med. Chem., 2010, 17(27), 3080-3093.
[http://dx.doi.org/10.2174/092986710791959756] [PMID: 20629624]
Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science, 1994, 264(5157), 382-388.
[http://dx.doi.org/10.1126/science.8153625] [PMID: 8153625]
Mangoni, M.L.; Epand, R.F.; Rosenfeld, Y.; Peleg, A.; Barra, D.; Epand, R.M.; Shai, Y. Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J. Biol. Chem., 2008, 283(34), 22907-22917.
[http://dx.doi.org/10.1074/jbc.M800495200] [PMID: 18550541]
Bhunia, A.; Domadia, P.N.; Torres, J.; Hallock, K.J.; Ramamoorthy, A.; Bhattacharjya, S. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J. Biol. Chem., 2010, 285(6), 3883-3895.
[http://dx.doi.org/10.1074/jbc.M109.065672] [PMID: 19959835]
Bhattacharjya, S.; Ramamoorthy, A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J., 2009, 276(22), 6465-6473.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07357.x] [PMID: 19817858]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
Saravanan, R.; Bhattacharjya, S. Oligomeric structure of a cathelicidin antimicrobial peptide in dodecylphosphocholine micelle determined by NMR spectroscopy. Biochim. Biophys. Acta, 2011, 1808(1), 369-381.
[http://dx.doi.org/10.1016/j.bbamem.2010.10.001] [PMID: 20933496]
Wang, G. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochim. Biophys. Acta, 2007, 1768(12), 3271-3281.
[http://dx.doi.org/10.1016/j.bbamem.2007.08.005] [PMID: 17905196]
Campbell, A.P.; Sykes, B.D. The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu. Rev. Biophys. Biomol. Struct., 1993, 22, 99-122.
[http://dx.doi.org/10.1146/annurev.bb.22.060193.000531] [PMID: 8348000]
Carlomagno, T. Ligand-target interactions: what can we learn from NMR? Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 245-266.
[http://dx.doi.org/10.1146/annurev.biophys.34.040204.144419] [PMID: 15869390]
Franzmann, M.; Otzen, D.; Wimmer, R. Quantitative use of paramagnetic relaxation enhancements for determining orientations and insertion depths of peptides in micelles. ChemBioChem, 2009, 10(14), 2339-2347.
[http://dx.doi.org/10.1002/cbic.200900347] [PMID: 19688788]
Brender, J.R.; Krishnamoorthy, J.; Ghosh, A.; Bhunia, A. Binding moiety mapping by saturation transfer difference NMR. Methods Mol. Biol., 2018, 1824, 49-65.
[http://dx.doi.org/10.1007/978-1-4939-8630-9_4] [PMID: 30039401]
Meyer, B.; Klein, J.; Mayer, M.; Meinecke, R.; Möller, H.; Neffe, A.; Schuster, O.; Wülfken, J.; Ding, Y.; Knaie, O.; Labbe, J.; Palcic, M.M.; Hindsgaul, O.; Wagner, B.; Ernst, B. Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities. Ernst Schering Res. Found. Workshop, 2004, (44), 149-167.
[http://dx.doi.org/10.1007/978-3-662-05397-3_9] [PMID: 14579779]
Mohanram, H.; Nip, A.; Domadia, P.N.; Bhunia, A.; Bhattacharjya, S. NMR structure, localization, and vesicle fusion of Chikungunya virus fusion peptide. Biochemistry, 2012, 51(40), 7863-7872.
[http://dx.doi.org/10.1021/bi300901f] [PMID: 22978677]
Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. Biofactors, 2015, 41(5), 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem., 2008, 283(47), 32637-32643.
[http://dx.doi.org/10.1074/jbc.M805533200] [PMID: 18818205]
Li, X.; Li, Y.; Han, H.; Miller, D.W.; Wang, G. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J. Am. Chem. Soc., 2006, 128(17), 5776-5785.
[http://dx.doi.org/10.1021/ja0584875] [PMID: 16637646]
Bhunia, A.; Ramamoorthy, A.; Bhattacharjya, S. Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Chemistry, 2009, 15(9), 2036-2040.
[http://dx.doi.org/10.1002/chem.200802635] [PMID: 19180607]
Domadia, P.N.; Bhunia, A.; Ramamoorthy, A.; Bhattacharjya, S. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. J. Am. Chem. Soc., 2010, 132(51), 18417-18428.
[http://dx.doi.org/10.1021/ja1083255] [PMID: 21128620]
Porcelli, F.; Buck-Koehntop, B.A.; Thennarasu, S.; Ramamoorthy, A.; Veglia, G. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry, 2006, 45(18), 5793-5799.
[http://dx.doi.org/10.1021/bi0601813] [PMID: 16669623]
Datta, A.; Bhattacharyya, D.; Singh, S.; Ghosh, A.; Schmidtchen, A.; Malmsten, M.; Bhunia, A. Role of aromatic amino acids in lipopolysaccharide and membrane interactions of antimicrobial peptides for use in plant disease control. J. Biol. Chem., 2016, 291(25), 13301-13317.
[http://dx.doi.org/10.1074/jbc.M116.719575] [PMID: 27137928]
Singh, S.; Papareddy, P.; Kalle, M.; Schmidtchen, A.; Malmsten, M. Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides. Biochim. Biophys. Acta, 2013, 1828(11), 2709-2719.
[http://dx.doi.org/10.1016/j.bbamem.2013.06.015] [PMID: 23806651]
Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.; Vogel, H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One, 2010, 5(9), e12684
[http://dx.doi.org/10.1371/journal.pone.0012684] [PMID: 20844765]
Singh, S.; Datta, A.; Schmidtchen, A.; Bhunia, A.; Malmsten, M. Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects. Sci. Rep., 2017, 7(1), 212.
[http://dx.doi.org/10.1038/s41598-017-00188-7] [PMID: 28303012]
Bhattacharjya, S.; Domadia, P.N.; Bhunia, A.; Malladi, S.; David, S.A. High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry, 2007, 46(20), 5864-5874.
[http://dx.doi.org/10.1021/bi6025159] [PMID: 17469802]
Mohanram, H.; Bhattacharjya, S. β-Boomerang antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel), 2014, 7(4), 482-501.
[http://dx.doi.org/10.3390/ph7040482] [PMID: 24756162]
Datta, A.; Ghosh, A.; Airoldi, C.; Sperandeo, P.; Mroue, K.H.; Jiménez-Barbero, J.; Kundu, P.; Ramamoorthy, A.; Bhunia, A. antimicrobial peptides: insights into membrane permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci. Rep., 2015, 5, 11951.
[http://dx.doi.org/10.1038/srep11951] [PMID: 26144972]
Melo, M.N.; Sousa, F.J.; Carneiro, F.A.; Castanho, M.A.; Valente, A.P.; Almeida, F.C.; Da Poian, A.T.; Mohana-Borges, R. Interaction of the Dengue virus fusion peptide with membranes assessed by NMR: The essential role of the envelope protein Trp101 for membrane fusion. J. Mol. Biol., 2009, 392(3), 736-746.
[http://dx.doi.org/10.1016/j.jmb.2009.07.035] [PMID: 19619560]
Datta, A.; Yadav, V.; Ghosh, A.; Choi, J.; Bhattacharyya, D.; Kar, R.K.; Ilyas, H.; Dutta, A.; An, E.; Mukhopadhyay, J.; Lee, D.; Sanyal, K.; Ramamoorthy, A.; Bhunia, A. Mode of action of a designed antimicrobial peptide: high potency against Cryptococcus neoformans. Biophys. J., 2016, 111(8), 1724-1737.
[http://dx.doi.org/10.1016/j.bpj.2016.08.032] [PMID: 27760359]
Fernandez, D.I.; Sani, M.A.; Gehman, J.D.; Hahm, K.S.; Separovic, F. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Eur. Biophys. J., 2011, 40(4), 471-480.
[http://dx.doi.org/10.1007/s00249-010-0660-5] [PMID: 21225256]
Lee, D.K.; Brender, J.R.; Sciacca, M.F.; Krishnamoorthy, J.; Yu, C.; Ramamoorthy, A. Lipid composition-dependent membrane fragmentation and pore-forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry, 2013, 52(19), 3254-3263.
[http://dx.doi.org/10.1021/bi400087n] [PMID: 23590672]
Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med., 2013, 369(9), 840-851.
[http://dx.doi.org/10.1056/NEJMra1208623] [PMID: 23984731]
Dempsey, C.E.; Ueno, S.; Avison, M.B. Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry, 2003, 42(2), 402-409.
[http://dx.doi.org/10.1021/bi026328h] [PMID: 12525167]
Datta, A.; Kundu, P.; Bhunia, A. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. J. Colloid Interface Sci., 2016, 461, 335-345.
[http://dx.doi.org/10.1016/j.jcis.2015.09.036] [PMID: 26407061]
Ward, B.P.; Ottaway, N.L.; Perez-Tilve, D.; Ma, D.; Gelfanov, V.M.; Tschöp, M.H.; Dimarchi, R.D. Peptide lipidation stabilizes structure to enhance biological function. Mol. Metab., 2013, 2(4), 468-479.
[http://dx.doi.org/10.1016/j.molmet.2013.08.008] [PMID: 24327962]
Winter, S.E.; Winter, M.G.; Poon, V.; Keestra, A.M.; Sterzenbach, T.; Faber, F.; Costa, L.F.; Cassou, F.; Costa, E.A.; Alves, G.E.; Paixão, T.A.; Santos, R.L.; Bäumler, A.J. Salmonella enterica Serovar Typhi conceals the invasion-associated type three secretion system from the innate immune system by gene regulation. PLoS Pathog., 2014, 10(7), e1004207
[http://dx.doi.org/10.1371/journal.ppat.1004207] [PMID: 24992093]
d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
Bao, S.; Huang, S.; Liu, Y.; Hu, Y.; Wang, W.; Ji, M.; Li, H.; Zhang, N.X.; Song, C.; Duan, S. Gold nanocages with dual modality for image-guided therapeutics. Nanoscale, 2017, 9(21), 7284-7296.
[http://dx.doi.org/10.1039/C7NR01350G] [PMID: 28524912]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
Yih, T.C.; Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem., 2006, 97(6), 1184-1190.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater., 2017, 47, 170-181.
[http://dx.doi.org/10.1016/j.actbio.2016.09.041] [PMID: 27693686]
Chowdhury, R.; Ilyas, H.; Ghosh, A.; Ali, H.; Ghorai, A.; Midya, A.; Jana, N.R.; Das, S.; Bhunia, A. Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. Nanoscale, 2017, 9(37), 14074-14093.
[http://dx.doi.org/10.1039/C7NR04062H] [PMID: 28901372]
Troutman, T.S.; Barton, J.K.; Romanowski, M. Biodegradable plasmon resonant nanoshells. Adv. Mater., 2008, 20(13), 2604-2608.
[http://dx.doi.org/10.1002/adma.200703026] [PMID: 21494416]
Chou, L.Y.; Zagorovsky, K.; Chan, W.C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol., 2014, 9(2), 148-155.
[http://dx.doi.org/10.1038/nnano.2013.309] [PMID: 24463361]
Rajchakit, U.; Sarojini, V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug. Chem., 2017, 28(11), 2673-2686.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00368] [PMID: 28892365]
Brouwer, C.P.; Rahman, M.; Welling, M.M. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides, 2011, 32(9), 1953-1963.
[http://dx.doi.org/10.1016/j.peptides.2011.07.017] [PMID: 21827807]
Dijkshoorn, L.; Brouwer, C.P.; Bogaards, S.J.; Nemec, A.; van den Broek, P.J.; Nibbering, P.H. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2004, 48(12), 4919-4921.
[http://dx.doi.org/10.1128/AAC.48.12.4919-4921.2004] [PMID: 15561882]
Lupetti, A.; Paulusma-Annema, A.; Welling, M.M.; Senesi, S.; van Dissel, J.T.; Nibbering, P.H. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob. Agents Chemother., 2000, 44(12), 3257-3263.
[http://dx.doi.org/10.1128/AAC.44.12.3257-3263.2000] [PMID: 11083624]
Shirinov, N.M.; Agaev, A.A.; Mirzabekov, D.A.; Mamedov, A.M.; Godzhaev, A.N. [Experience with controlling theileriasis]. Veterinariia, 1975, 3(3), 62-63.
[PMID: 124992]
Datta, A.; Jaiswal, N.; Ilyas, H.; Debnath, S.; Biswas, K.; Kumar, D.; Bhunia, A. Structural and dynamic insights into a glycine-mediated short analogue of a designed peptide in lipopolysaccharide micelles: correlation between compact structure and anti-endotoxin activity. Biochemistry, 2017, 56(9), 1348-1362.
[http://dx.doi.org/10.1021/acs.biochem.6b01229] [PMID: 28168875]
Ge, Y.; MacDonald, D.L.; Holroyd, K.J.; Thornsberry, C.; Wexler, H.; Zasloff, M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother., 1999, 43(4), 782-788.
[http://dx.doi.org/10.1128/AAC.43.4.782] [PMID: 10103181]
Boge, L.; Bysell, H.; Ringstad, L.; Wennman, D.; Umerska, A.; Cassisa, V.; Eriksson, J.; Joly-Guillou, M.L.; Edwards, K.; Andersson, M. Lipid-based liquid crystals as carriers for antimicrobial peptides: phase behavior and antimicrobial effect. Langmuir, 2016, 32(17), 4217-4228.
[http://dx.doi.org/10.1021/acs.langmuir.6b00338] [PMID: 27033359]
Saravolatz, L.D.; Pawlak, J.; Johnson, L.; Bonilla, H.; Saravolatz, L.D., II; Fakih, M.G.; Fugelli, A.; Olsen, W.M. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob. Agents Chemother., 2012, 56(8), 4478-4482.
[http://dx.doi.org/10.1128/AAC.00194-12] [PMID: 22585222]
Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795.
[http://dx.doi.org/10.1021/jm200450h] [PMID: 21732630]
Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther., 2018, 16(4), 259-268.
[http://dx.doi.org/10.1080/14787210.2018.1441024] [PMID: 29451043]
Turner, J.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother., 1998, 42(9), 2206-2214.
[http://dx.doi.org/10.1128/AAC.42.9.2206] [PMID: 9736536]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10), e25333
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
Torres-Juarez, F.; Cardenas-Vargas, A.; Montoya-Rosales, A.; González-Curiel, I.; Garcia-Hernandez, M.H.; Enciso-Moreno, J.A.; Hancock, R.E.; Rivas-Santiago, B. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect. Immun., 2015, 83(12), 4495-4503.
[http://dx.doi.org/10.1128/IAI.00936-15] [PMID: 26351280]
Kokryakov, V.N.; Harwig, S.S.; Panyutich, E.A.; Shevchenko, A.A.; Aleshina, G.M.; Shamova, O.V.; Korneva, H.A.; Lehrer, R.I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett., 1993, 327(2), 231-236.
[http://dx.doi.org/10.1016/0014-5793(93)80175-T] [PMID: 8335113]
Rozek, A.; Friedrich, C.L.; Hancock, R.E. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry, 2000, 39(51), 15765-15774.
[http://dx.doi.org/10.1021/bi000714m] [PMID: 11123901]
Robinson, W.E., Jr; McDougall, B.; Tran, D.; Selsted, M.E. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol., 1998, 63(1), 94-100.
[http://dx.doi.org/10.1002/jlb.63.1.94] [PMID: 9469478]
Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S.T.; Mixson, A.J. Peptide-based antifungal therapies against emerging infections. Drugs Future, 2010, 35(3), 197.
[http://dx.doi.org/10.1358/dof.2010.035.03.1452077] [PMID: 20495663]
De Lucca, A.J.; Walsh, T.J. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother., 1999, 43(1), 1-11.
[http://dx.doi.org/10.1128/AAC.43.1.1] [PMID: 9869556]
Zimmermann, G.R.; Legault, P.; Selsted, M.E.; Pardi, A. Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry, 1995, 34(41), 13663-13671.
[http://dx.doi.org/10.1021/bi00041a048] [PMID: 7577957]
Mathews, M.; Jia, H.P.; Guthmiller, J.M.; Losh, G.; Graham, S.; Johnson, G.K.; Tack, B.F.; McCray, P.B., Jr Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun., 1999, 67(6), 2740-2745.
[http://dx.doi.org/10.1128/IAI.67.6.2740-2745.1999] [PMID: 10338476]
Ganz, T.; Lehrer, R.I. Defensins. Pharmacol. Ther., 1995, 66(2), 191-205.
[http://dx.doi.org/10.1016/0163-7258(94)00076-F] [PMID: 7667395]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 March, 2020
Page: [1387 - 1404]
Pages: 18
DOI: 10.2174/0929867326666190624090817
Price: $65

Article Metrics

PDF: 19
PRC: 1