Conversion of Benzimidazoles, Imidazothiazoles and Imidazoles into more Potent Central Nervous System Acting Drugs

Author(s): Saganuwan A. Saganuwan*

Journal Name: Central Nervous System Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Central Nervous System Agents)

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Benzimidazole (albendazole), imidazothiazole (levamisole) and imidazole (euconazole) are used in chemotherapy of helminthosis and mycosis respectively, with central nervous system (CNS) side effects. But only a limited number of azole groups are used clinically in the treatment of CNS diseases, which are on increase and could not be cured permanently. Due to increased incidence of more challenging new CNS diseases, there is a need for the synthesis of more potent CNS drugs.

Methods: Hence, literature studies were carried out for the identification of common pathways for the synthesis of the three groups of compounds, their CNS properties and the possibility of modifying them to potent CNS drugs.

Results: Findings have shown that gloxal with formaldehyde in the presence of ammonia can be converted into imidazole, imidazothiazole and benzimidazole via distillation, condensation, alkylation, acylation, oxidation, cyclization, sulphation and amidation. However, agents such as phosphorus pentoxide, ethanolic potassium hydroxide, sodium hypochlorite, sodium hexafluroaluminate, aniline, calcium acetate, calcium benzoate, sodium hydroxide, aromatic aldehydes, bromoketones, alpha dicarbonyl compounds among others are used as reagents. The furan ring(s) may have a strong capability of penetrating CNS for the treatment of neurological disorders. The products from the three groups have agonistic, antagonistic, mixed agonistic and mixed antagonistic depressant and stimulant activities due to the presence of heteroatoms such as nitrogen, oxygen and sulphur. Imidazole may be the most potent with best characteristics of CNS penetrability and activity followed by imidazothiazole and benzimidazole.

Conclusion: Azole group is common to all the three classes and may be responsible for some of their CNS effects. The resultant compounds could act via all neurotransmitters, voltage and ligand-gated ion channels and may be chiral.

Keywords: Azole, brain, drug, medicinal chemistry, neuropsychopharmacology, neurodegenerative disease.

[1]
Babizhayev, M.A. Biochemical, biomedical and metabolic aspects of imidazole-containing dipeptides with the inherent complexity to neurodegenerative diseases and various states of mental well-being: A challenging correction and neurotherapeutic pharmaceutical biotechnology for treating cognitive deficits, depression and intellectual disabilities. Curr. Pharm. Biotechnol., 2014, 15(8), 738-778.
[http://dx.doi.org/10.2174/1389201015666140827104918] [PMID: 25158972]
[2]
Sy, G.Y.; Bruban, V.; Bousquet, P.; Feldman, J. Nitric oxide and central antihypertensive drugs: One more difference between catecholamines and imidazolines. Hypertension, 2001, 37(2), 246-249.
[http://dx.doi.org/10.1161/01.HYP.37.2.246] [PMID: 11230279]
[3]
Bano, K.; Naeem, S.; Siddiqui, N.A.; Minhas, N.; Akhtar, N. Computer aided drug design of imidazole free acylpiperazine derivative as a histamine H3 receptor antagonist. Pak. J. Biochem. Mol. Biol., 2012, 45(3), 154-158.
[4]
Filippelli, A.; Cuparencu, B.; Berrino, L.; Tomus, C.; Rossi, F. The influence of imidazole administration on arrhythmias induced by potassium chloride, calcium chloride and ouabain in isolated guinea pig hearts. Curr. Therapeut. Res., 1994, 55(1), 43-50.
[http://dx.doi.org/10.1016/S0011-393X(05)80076-1]
[5]
Kurocochi, Y.; Fukui, Y.; Adachi, N. Pharmacology of four imidazole derivatives related with histidine. Jpn. J. Pharmacol., 1956, 5(2), 132-138.
[http://dx.doi.org/10.1254/jjp.5.132] [PMID: 13331656]
[6]
Bertoni, S.; Ballabeni, V.; Flammini, L.; Saccani, F.; Domenichini, G.; Morini, G.; Comini, M.; Rivara, M.; Barocelli, E. In vitro and in vivo pharmacological analysis of imidazole-free histamine H3 receptor antagonists: promising results for a brain-penetrating H3 blocker with weak anticholinesterase activity. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 378(3), 335-343.
[http://dx.doi.org/10.1007/s00210-008-0299-2] [PMID: 18496672]
[7]
Ferrari, F.; Baggio, G.; Mangiafico, V. Effects of imidazole and some imidazole-derivatives on lisuride-induced mounting and aggressiveness. Psychopharmacology (Berl.), 1987, 93(1), 19-24.
[http://dx.doi.org/10.1007/BF02439581] [PMID: 3114811]
[8]
Francesca, F.; Baggio, G. Influence of imidazole on behavioral effects induced by dopaminergic agonists in rats. Life Sci., 1985, 36(14), 1397-1405.
[http://dx.doi.org/10.1016/0024-3205(85)90046-3] [PMID: 2858800]
[9]
Karppanen, H.; Paakkari, P.; Orma, A.L.; Paakkari, I. Central hypotensive effects of imidazole acetic acid and rolipram (ZG 62711) in rats. Inflamm. Res., 1979, 84-85.
[10]
Tunnicliff, G. Pharmacology and function of imidazole 4-acetic acid in brain. Gen. Pharmacol., 1998, 31(4), 503-509.
[http://dx.doi.org/10.1016/S0306-3623(98)00079-2] [PMID: 9792207]
[11]
Jayappa, M.K.D.; Dasappa, J.P.; Puthallath, R.E.; Castelino, P.A. Synthesis and Pharmacological screening studies of some novel imidazo[2, 1-b] [1,3,4] thiadiazole. Pharma Chem., 2016, 8(5), 178-190.
[12]
Giles, K.; Berry, D.B.; Condello, C.; Dugger, B.N.; Li, Z.; Oehler, A.; Bhardwaj, S.; Elepano, M.; Guan, S.; Silber, B.M.; Olson, S.H.; Prusiner, S.B. Optimization of aryl amides that extend survival in prion-infected mice. J. Pharmacol. Exp. Ther., 2016, 358(3), 537-547.
[http://dx.doi.org/10.1124/jpet.116.235556] [PMID: 27317802]
[13]
Szacoń, E.; Rządkowska, M.; Kaczor, A.A.; Kędzierska, E.; Fidecka, S.; Matosiuk, D. Synthesis, central nervous system activity and structure-activity relationships of novel 1-(1-alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted urea derivatives. Molecules, 2015, 20(3), 3821-3840.
[http://dx.doi.org/10.3390/molecules20033821] [PMID: 25730390]
[14]
Wei, P.H.L.; Bell, S.C. 2,3;4,5-substituted thiazoles. U.S. Patent 363,455, 1974.
[15]
Rządkowska, M.; Szacoń, E.; Kaczor, A.A.; Fidecka, S.; Kędzierska, E.; Matosiuk, D. Synthesis, central nervous system activity, and structure-activity relationship of 1-aryl-6-benzyl-7-hydroxy-2,3-dihydroimidazo[1,2-a]pyrimidine-5(1H)-ones. Med. Chem. Res., 2014, 23, 4221-4237.
[http://dx.doi.org/10.1007/s00044-014-0993-1] [PMID: 25132789]
[16]
Zisterer, D.M.; Williams, D.C. Identification of novel ligands for the peripheral-type benzodiazepine receptor. Biochem. Soc. Trans., 1995, 23(2), 371S.
[http://dx.doi.org/10.1042/bst023371s] [PMID: 7672402]
[17]
Gagoria, J.; Verma, P.K.; Khatkar, A. Anticonvulsant and neurological profile of benzothiazoles: A mini-review. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(1), 11-16.
[http://dx.doi.org/10.2174/1871524915666150112094206] [PMID: 25578435]
[18]
Kamboj, V.K.; Verma, P.K.; Dhanda, A.; Ranjan, S.I. 2,4-triazole derivatives as potential scaffold for anticonvulsant activity. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15, 17-22.
[19]
Mracec, M.; Borota, A.; Rad, R.; Ostopovici, L.; Mracec, M. Conformational analysis for a series of imidazole ligands acting as an antagonist on the histamine H3 receptor. Rev. Romain. Chim., 2007, 52(1-2), 201-206.
[20]
Merauer, J.Y.; Baron, F.; Ple, K.; Bonnet, P.; Routier, S. The azandole frame work in the design of kinase inhibitors. Molecules, 2014, 19, 19985-19979.
[21]
Cilibrasi, V. Polycyclic pyrrolo-thiazole systems with biological activity., PhD Thesis, Universita Deyli Studid Di Palermo. 2015.
[22]
Andreani, A.; Granaiola, M.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Stefanelli, C.; Masotti, L.; Nguyen, T.L.; Hamel, E.; Shoemaker, R.H. Substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinones and analogues: synthesis, cytotoxic activity, and study of the mechanism of action. J. Med. Chem., 2012, 55(5), 2078-2088.
[http://dx.doi.org/10.1021/jm2012694] [PMID: 22283430]
[23]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2016, 27(4), 477-505.
[24]
Ghabbour, H.A.; Kadi, A.A.; El-Tahir, K.E.H.; Angawi, R.F.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular docking studies of thiazole based pyrrolidinones and isoindolidinones as anticonvulsant agents. Med. Chem. Res., 2015, 24(8), 3194-3211.
[http://dx.doi.org/10.1007/s00044-015-1371-3]
[25]
Harish, K.P.; Mohana, K.N.; Mallesha, L. Synthesis of pyrazine substituted 1,3,4-thiadiazole derivatives and their anticonvulsant activity. Org. Chem. Int., 2013, 2013631723https://www.hindawi.com/journals/oci/2013/631723/
[26]
Kolasa, K.; Kleinrok, Z.; Pietrasiewicz, T.; Czechowska, G.; Kieć-Kononowicz, K.; Zejc, A. Pharmacological studies on the central action of novel benzylidene-imidazothiazolone derivatives. Pol. J. Pharmacol. Pharm., 1989, 41(4), 377-383.
[PMID: 2576811]
[27]
Lafferty, T. Synthesis of a 1,2,4-substituted imidazole for a fragment- based drug discovery library. Honors Program Thesis. 2017.
[28]
Funderburk, W.H.; King, E.E.; Domino, E.F.; Unna, K.R. Pharmacological properties of benzazoles. II. Sites of action in the central nervous system. J. Pharmacol. Exp. Ther., 1953, 107(3), 356-367.
[PMID: 13035674]
[29]
de la Fuente, T.; Martín-Fontecha, M.; Sallander, J.; Benhamú, B.; Campillo, M.; Medina, R.A.; Pellissier, L.P.; Claeysen, S.; Dumuis, A.; Pardo, L.; López-Rodríguez, M.L. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists molecular. Mechanisms of receptor inactivation. J. Med. Chem., 2010, 53(3), 1357-1369.
[http://dx.doi.org/10.1021/jm901672k] [PMID: 20078106]
[30]
Pinderspacher, K.A. Six-membered ring systems. Progr. Heterocycl. Chem., 2015, 27, 393-450.
[http://dx.doi.org/10.1016/B978-0-08-100024-3.00013-1]
[31]
Asif, M. A brief review on antitubercular activity of pharmacological active some triazole analogues. Global J. Res. Rev, 2014, 1, (3), 051-058.
[32]
Chemie, B.G. Imidazole: Toxicological Evaluation. U.S. Patent 203, March 06, 2018.
[33]
Armenta, A.; Juan, S.S. Synthesis of 1,3-dihydro-2H-benzimidazole-2-ones (micro review). Chem. Heterocycl. Compd., 2016, 52(12), 1002-1004.
[http://dx.doi.org/10.1007/s10593-017-1999-7]
[34]
Mamedov, V.A.; Zhukova, N.A. Chapter 1-recent advances in the synthesis of benzimidazol-2-ones via rearrangements. Progr. Heterocycl. Chem, 2017, 29, 1-43.
[35]
Mamedov, V.A. Recent advances on the synthesis of benzimidazol-(on)es via rearrangements of quinoxalin(on)es. RSC Advances, 2016, 48, 1-6.
[http://dx.doi.org/10.1039/C6RA03907C]
[36]
Kamil, A.; Akhtar, S.; Karim, A.; Ahmed, A.; Wajdi, M.; Khan, Z.; Scify, Z.S. Benzimidazole derivative with potential cytotoxic activity-synthesis and their structure-activity relationship. FUUAST J., 2013, 3(2), 87-89.
[37]
Gamma, T.V.; Korenyuk, I.I. Effects of bemitel and benzimidazole on behavior of rats in open field test. Neurophysiology, 2006, 38(1), 75.
[http://dx.doi.org/10.1007/s11062-006-0028-8]
[38]
Mute, V.M.; Bodhankar, S.L. Potentiation of pressor effect of tyramine by newly synthesized compound 2[(n-benzylacetamido) mercapto) benzimidazole (vs. 25), a putative inhibitor of monoamine oxidase-enzyme in rats. Der. Pharmac. Lett., 2015, 6(6), 165-174.
[39]
Cernatescu, C.; Cobzaru, C.; Apostolescu, G.A.; Apostolescu, N.; Marinoiu, A. Quaternization of N-methylated phenyl-benzimi dazole azomethines to benzimidazolium salts. Rev. Raimain. Chim., 2016, 6-7(1), 591-596.
[40]
Dancius, C. New approaches to cancer prevention. Anti-Cancer Agent. Med. Chem., 2018, 18(5), 630.
[http://dx.doi.org/10.2174/187152061805180821111229]
[41]
Jose, C.V.; Anto, T.J. Studies on complexes of Cu2+ and Zn2+ metal ions with 2-(thiophene-2-formylimino) benzimidazole. Int. J. Chem. Sci., 2009, 7(4), 2541-2548.
[42]
Wildenberg, M.E.; Levin, A.D.; Ceroni, A.; Guo, Z.; Koelink, P.J.; Hakvoort, T.B.M.; Westera, L.; Bloemendaal, F.M.; Brandse, J.F.; Simmons, A.; D’Haens, G.R.; Ebner, D.; Van den Brink, G.R. Benzimidazoles promote anti-TNF mediated induction of regulatory macrophages and enhance therapeutic efficacy in murine model. J. Crohn’s Colitis, 2017, 11(12), 1480-1490.
[43]
Mamedov, V.A.; Shukova, N.A.; Sinyashin, O.G. Advances in the synthesis of benzimidazolones via rearrangements of benzodiazepinones and quinalin(on)es. Mendeleev Commun., 2017, 27, 1-11.
[http://dx.doi.org/10.1016/j.mencom.2017.01.001]
[44]
Shingare, R.D.; Kulkarni, A.S.; Sutar, R.L.; Reddy, D.S. Route to benzimidazol-2-ones via decarbonylative ring contraction of quinoxalinediones: application to the synthesis of flibanserin, a drug for treating hypoactive sexual desire disorder in women and marine natural product lunanamycin analogue. ACS Omega, 2017, 2(8), 5137-5141.
[http://dx.doi.org/10.1021/acsomega.7b00819] [PMID: 30023739]
[45]
Mamedov, V.A.; Zhukova, N.A.; Zamaletdinova, A.I.; Beschastnova, T.N.; Kadyrova, M.S.; Rizvanov, I.Kh.; Syakaev, V.V.; Latypov, S.K. Reaction for the synthesis of benzimidazol-2-ones, imidazo[5,4-b]-, and imidazo[4,5-c]pyridin-2-ones via the rearrangement of quinoxalin-2-ones and their aza analogues when exposed to enamines. J. Org. Chem., 2014, 79(19), 9161-9169.
[http://dx.doi.org/10.1021/jo501526a] [PMID: 25203611]
[46]
Tapia, I.; Alonso-Cires, L.; López-Tudanca, P.L.; Mosquera, R.; Labeaga, L.; Innerárity, A.; Orjales, A. 2,3-Dihydro-2-oxo-1H-benzimidazole-1-carboxamides with selective affinity for the 5-HT(4) receptor: Synthesis and structure-affinity and structure-activity relationships of a new series of partial agonist and antagonist derivatives. J. Med. Chem., 1999, 42(15), 2870-2880.
[http://dx.doi.org/10.1021/jm981098j] [PMID: 10425096]
[47]
Demont, E.H.; Bamborough, P.; Chung, C.W.; Craggs, P.D.; Fallon, D.; Gordon, L.J.; Grandi, P.; Hobbs, C.I.; Hussain, J.; Jones, E.J.; Le Gall, A.; Michon, A.M.; Mitchell, D.J.; Prinjha, R.K.; Roberts, A.D.; Sheppard, R.J.; Watson, R.J. 1,3-dimethyl benzimidazolones are potent, selective inhibitors of the BRPF1 bromodoman. ACS Med. Chem. Lett., 2014, 5(11), 1190-1195.
[http://dx.doi.org/10.1021/ml5002932] [PMID: 25408830]
[48]
Wee, X-K.; Ng, K-S.; Leung, H-W.; Cheong, Y-P.; Kong, K-H.; Ng, F-M.; Soh, W.; Lam, Y.; Low, C.M. Mapping the high-affinity binding domain of 5-substituted benzimidazoles to the proximal N-terminus of the GluN2B subunit of the NMDA receptor. Br. J. Pharmacol., 2010, 159(2), 449-461.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00549.x] [PMID: 20082612]
[49]
Rice, C.A.; Colon, B.L.; Alp, M.; Göker, H.; Boykin, D.W.; Kyle, D.E. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob. Agents Chemother., 2015, 59(4), 2037-2044.
[http://dx.doi.org/10.1128/AAC.05122-14] [PMID: 25605363]
[50]
Ozkay, U.D.; Can, O.D.; Turan, N.; Cavusoglu, B.K. Synthesis and nociceptive activities of some novel benzimidazole-piperidine derivatives. Turk. J. Chem., 2017, 41, 672-682.
[http://dx.doi.org/10.3906/kim-1612-76]
[51]
Aleyasin, H.; Karuppagounder, S.S.; Kumar, A.; Sleiman, S.; Basso, M.; Ma, T.; Siddiq, A.; Chinta, S.J.; Brochier, C.; Langley, B.; Haskew-Layton, R.; Bane, S.L.; Riggins, G.J.; Gazaryan, I.; Starkov, A.A.; Andersen, J.K.; Ratan, R.R. Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin. Antioxid. Redox Signal., 2015, 22(2), 121-134.
[http://dx.doi.org/10.1089/ars.2013.5595] [PMID: 24766300]
[52]
Bethi, S.; Vidyasagar, M.; Rajamanohar, K.; Venkateshwar, R.J.; Gummudavelly, S. Synthesis and pharmacological evaluation of new benzimidazole derivatives. Der. Chim. Sin., 2011, 2(1), 84-90.
[53]
Galeotti, N.; Sanna, M.D.; Ghelardini, C. Pleiotropic effect of histamine H4 receptor modulation in the central nervous system. Neuropharmacology, 2013, 71, 141-147.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.026] [PMID: 23583928]
[54]
Saito, T.; Fukuda, T.; Sukamoto, T.; Yashidomi, M.; Morimoto, Y.; Shimohara, K.; Ito, K.I. Homopiperazinyl benzimidazole difumarate,1st communication: Effect on the central nervous system. Arzneimittelforschung, 1988, 38(1), 66-69.
[PMID: 2896509]
[55]
Thompson, Jr, H.G.; Hirschberg, E.; Zaidenweber, J.; Gelhorn, A. Toxicological and clinical evolution of a new nitrogen mustard, 2-[di-(2-chloroethyl)-aminomethyl] benzimidazole. Cancer Res., 1959, 19, 719-725.
[56]
Marshall, F.N.; Jones, W.R.; Weaver, L.C. Comparison of pharmacologic activity in a series of benzimidazole compounds. Proc. Soc. Exp. Biol. Med., 1964, 116, 912-914.
[http://dx.doi.org/10.3181/00379727-116-29406] [PMID: 14230387]
[57]
Sasmal, K.; Sasmal, S.; Abbineni, G.; Venkatesham, B.; Rao, P.T.; Roshaiah, M.; Khanna, I.; Sebastian, V.J.; Singh, M.P.; Talwar, R.; Shashikumar, D.; Reddy, K.H.; Frimurer, T.M.; Rist, O.; Elster, L.; Hogberg, T. Synthesis and SAR studies of benzimidazole derivatives as melanin concentrating hormone receptor 1(MCHRI) antagonists: Focus to detune hERG inhibition. MedChemComm, 2011, 2, 385-389.
[58]
Dedrieka, V.B.I. Inhibition of monoamine oxidase B by substituted benzimidozole analogues. Bioorg. Med. Chem., 2006, 15(11), 3692-3702.
[59]
Sarnpitak, P.; Mujumdar, P.; Morisseau, C.; Hwang, S.H.; Hammock, B.; Iurchenko, V.; Zozulya, S.; Gavalas, A.; Geronikaki, A.; Ivanenkov, Y.; Krasavin, M. Potent, orally available, selective COX-2 inhibitors based on 2-imidazoline core. Eur. J. Med. Chem., 2014, 84, 160-172.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.023] [PMID: 25016374]
[60]
Julia, L.; Tozakidis, L.E.P.; Prachee, B.; Hans-Joachim, G. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation; Information System Division, National Agricultural Library, 2013.
[61]
Ai, J.; Wang, X.; Wahe, H.; Fomum, Z.T.; Sterner, O.; Nielsen, M.; Witt, M.R. 2-Oxo-2H-Pyrimido[2,1-b]benzothiazoles inhibit brain benzodiazepine receptor binding in vitro. Pharmacology, 2000, 60(4), 175-178.
[http://dx.doi.org/10.1159/000028366] [PMID: 10828741]
[62]
Saganuwan, S.A. Functional chemical groups that may likely become a source for synthesis of central nervous acting drugs. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17(3), 178-186.
[http://dx.doi.org/10.2174/1871524917666170502153752]
[63]
Marek, A.; Kulhanek, J.; Ludwig, M.; Bures, F. Facile synthesis of optically active imidazole derivatives. Molecules, 2007, 12(5), 1183-1190.
[http://dx.doi.org/10.3390/12051183] [PMID: 17873852]
[64]
Yaylayan, V.A.; Haffenden, L.J.W. Mechanism of imidazole and oxazole formation in [13C-2]-labelled glycine and alanine model systems. Food Chem., 2003, 81, 403-409.
[http://dx.doi.org/10.1016/S0308-8146(02)00470-3]
[65]
Lantios, J.; Gombartz, K.; McGuire, M.; Pridgen, L.; Remich, J.; Shicrat, S. Synthetic and mechanistic studies on the preparation of pyridyl-substituted imidazothiazoles. J. Org. Chem., 1988, 53, 4223-4227.
[http://dx.doi.org/10.1021/jo00253a012]
[66]
Shetty, N.S.; Khazi, I.A.M.; Ahn, C. Synthesis, anthelmintic and anti-inflammatory activities of some novel imidazothiazole sulfides and sulfones. Bull. Korean Chem. Soc., 2010, 31(8), 2337-2340.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2337]
[67]
Fik, C.P.; Krumm, C.; Muennig, C.; Baur, T.I.; Salz, U.; Bock, T.; Tiller, J.C. Impact of functional satellite groups on the antimicrobial activity and hemocompatibility of telechelic poly(2-methyl oxazoline)s. Biomacromolecules, 2012, 13(1), 165-172.
[http://dx.doi.org/10.1021/bm201403e] [PMID: 22148422]
[68]
Huang, K-S.; Yang, C-H.; Huang, S-L.; Chen, C-Y.; Lu, Y-Y.; Lin, Y-S. Recent advances in antimicrobial polymers: a mini-review. Int. J. Mol. Sci., 2016, 17(9), 1-14.
[http://dx.doi.org/10.3390/ijms17091578] [PMID: 27657043]
[69]
Reyes-Areliano, A.; Gomez-Garcia, O.; Torres-Jaramillo, J. Synthesis of azolines and imidazoles and their use in drug design. Med. Chem., 2016, 6(9), 561-570.
[70]
Bland, B.H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol., 1986, 26(1), 1-54.
[http://dx.doi.org/10.1016/0301-0082(86)90019-5] [PMID: 2870537]
[71]
Klebe, G.; Dullweber, F.; Bohm, H-J. Thermodynamic models of drug-receptor interactions: A general introduction.In: Drug-Receptor Thermodynamics: Introduction and Applications; Raffa, R.B., Ed.; Wiley: New Jersey, 2001, pp. 83-104.
[72]
Silverman, R.B. Drug-receptor interactions: The Organic Chemistry of Drug Design and Drug Action; Elsevier Academic Press: Massachusetts, 2004, pp. 123-131.
[73]
Motiejunas, D.; Wade, R.C. Structural, energetic and dynamic aspects of ligand-receptor interactions. Compr. Med. Chem., 2007, 4, 193-213.
[http://dx.doi.org/10.1016/B0-08-045044-X/00250-9]
[74]
Di Cera, E. Thermodynamic Theory of Site-specific Binding Processes.In: Biological Macromolecules; Cambridge University Press: Cambridge, UK, 1995.
[http://dx.doi.org/10.1017/CBO9780511524837]
[75]
Schaeffer, L. The role of functional groups in drug-receptor interactions.In: The Practice of Medicinal Chemistry; Elsevier: Netherlands, 2009, pp. 359-378.
[76]
Singh, L.; Kulshrestha, R.; Singh, N.; Jaggi, A.S. Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. Korean J. Physiol. Pharmacol., 2018, 22(3), 225-234.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.225] [PMID: 29719445]
[77]
Hunter, C.A.; Tomas, S. Cooperativity, partially bound states, and enthalpy-entropy compensation. Chem. Biol., 2003, 10(11), 1023-1032.
[http://dx.doi.org/10.1016/j.chembiol.2003.10.009] [PMID: 14652069]
[78]
Mobini, K.A.; Hamta, A.; Kalhor, M.; Shariatzadeh, M. Simple synthesis and biological evaluation of some benzimidazoles using sodium hexafluroaluminate, Na AlF6 as an efficient catalyst. Iran. J. Pharm. Res., 2014, 13(1), 95-101.
[PMID: 24734060]
[79]
Amirmostofian, M.; Pourahmad Jaktaji, J.; Soleimani, Z.; Tabib, K.; Tanbakosazan, F.; Omrani, M.; Kobarfard, F. Synthesis and molecular-cellular mechanistic study of pyridine derivative of dacarbazine. Iran. J. Pharm. Res., 2013, 12(3), 255-265.
[PMID: 24250631]
[80]
Grimmett, M.R. Imidazole and Benzimidazole Synthesis; Harcourt Brace and Company Publishers: California, USA, 1997, pp. 1-94.
[81]
Ranji, K.; Abdul Baguee, A. New particle: An overview of preparation, characterization and application. Int. Res. J. Pharm., 2013, 4(4), 47-57.
[82]
Kearney, J.A.F.; Frey, K.A.; Albin, R.L. Metabotropic glutamate against induced rotation: pharmacological FOS and (11C)-2-deoxyglucose autoradiography study. J. Neurotoxicol., 1997, 17(11), 4415-4425.
[PMID: 9151758]
[83]
Pavan, B.; Dalpiaz, A.; Ciliberti, N.; Biondi, C.; Manfredini, S.; Vertuani, S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules, 2008, 13(5), 1035-1065.
[http://dx.doi.org/10.3390/molecules13051035] [PMID: 18560328]
[84]
Ghose, A.K.; Herbertz, T.; Hudkins, R.L.; Dorsey, B.D.; Mallamo, J.P. Knowledge-based central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci., 2012, 3(1), 50-68.
[http://dx.doi.org/10.1021/cn200100h] [PMID: 22267984]
[85]
Hurko, O.; Ryan, J.L. Translational research in central nervous system drug discovery. NeuroRx, 2005, 2(4), 671-682.
[http://dx.doi.org/10.1602/neurorx.2.4.671] [PMID: 16489374]
[86]
Gogoi, P.; Konwar, D. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water. Tetrahedron Lett., 2006, 47, 79-82.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.134]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [3 - 12]
Pages: 10
DOI: 10.2174/1871524919666190621160323

Article Metrics

PDF: 15
HTML: 5