Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems

Author(s): Victoria Wagner, Aida Minguez-Menendez, Joan Pena, Christopher Fernández-Prada*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 14 , 2019


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Leishmania are sandfly-transmitted protozoan parasites that harbour within the macrophages of a mammalian host and cause leishmaniasis, a serious zoonotic disease that threatens the lives of millions worldwide. Its numerous forms (cutaneous, mucocutaneous, and visceral) are currently treated with a sparse arsenal of drugs, specifically antimonials, amphotericin B, miltefosine, and paromomycin, for which drug resistance and clinical failure are rampant. Medicine is presently trending towards nanotechnology to aid in the successful delivery of drugs. Vehicles such as lipid-based nanocarriers, polymer-based nanoparticles, and metal ions and oxides have been previously demonstrated to improve bioavailability of drugs and decrease toxicity for the patient. These cutting-edge solutions can be combined with existing active molecules, as well as novel drugs or plant extracts with promising antileishmanial activity.

Conclusion: This review explores the current evidence for the treatment of leishmaniases using nanoscale drug delivery systems (specifically lipid-, polymer- and metal-based systems) and encourages further development of the aforementioned nanotechnologies for treatment of Leishmania.

Keywords: Nanotechnology, Leishmania, drug delivery systems, liposomes, polymers, amphotericin B, antimony, miltefosine.

[1]
Louzir H, Aoun K, Späth GF, et al. Leishmania epidemiology, diagnosis, chemotherapy and vaccination approaches in the international network of Pasteur Institutes. Med Sci 2013; 29(12): 1151-60. [http://dx.doi.org/10.1051/medsci/20132912020]. [PMID: 24356147].
[2]
von Stebut E, Tenzer S. Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol 2017. [PMID: 29129568].
[3]
Handler MZ, Patel PA, Kapila R, Al-Qubati Y, Schwartz RA. Cutaneous and mucocutaneous leishmaniasis: Differential diagnosis, diagnosis, histopathology, and management J Am Acad Dermatol 2015; 73(6)911-26; 27-8
[4]
Bush JT, Wasunna M, Alves F, et al. Systematic review of clinical trials assessing the therapeutic efficacy of visceral leishmaniasis treatments: A first step to assess the feasibility of establishing an individual patient data sharing platform. PLoS Negl Trop Dis 2017; 11(9)e0005781 [http://dx.doi.org/10.1371/journal.pntd.0005781]. [PMID: 28873394].
[5]
Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Br Med Bull 2012; 104: 175-96. [http://dx.doi.org/10.1093/bmb/lds031]. [PMID: 23137768].
[6]
Laffitte MN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000 Res 2016; 5: 2350. [http://dx.doi.org/10.12688/f1000research.9218.1]. [PMID: 27703673].
[7]
Fernandez-Prada C, Vincent IM, Gazanion E, Monte-Neto RL. Omics and Their Impact on the Development of Chemotherapy Against Leishmania Drug Discovery for Leishmaniasis. The Royal Society of Chemistry 2018; pp. 101-29.
[8]
Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11(12)e0006052 [http://dx.doi.org/10.1371/journal.pntd.0006052]. [PMID: 29240765].
[9]
Fernandez-Prada C, Sharma M, Plourde M, et al. High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. Int J Parasitol Drugs Drug Resist 2018; 8(2): 165-73. [http://dx.doi.org/10.1016/j.ijpddr.2018.03.004]. [PMID: 29602064].
[10]
Fernandez-Prada C, Vincent IM, Brotherton MC, et al. Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Negl Trop Dis 2016; 10(12)e0005171 [http://dx.doi.org/10.1371/journal.pntd.0005171]. [PMID: 27911896].
[11]
Gazanion É, Fernández-Prada C, Papadopoulou B, Leprohon P, Ouellette M. Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci USA 2016; 113(21): E3012-21. [http://dx.doi.org/10.1073/pnas.1520693113]. [PMID: 27162331].
[12]
Leprohon P, Fernandez-Prada C, Gazanion É, Monte-Neto R, Ouellette M. Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist 2014; 5(1): 26-35. [http://dx.doi.org/10.1016/j.ijpddr.2014.09.005]. [PMID: 25941624].
[13]
Wang J, Leblanc E, Chang CF, et al. Pterin and folate reduction by the Leishmania tarentolae H locus short-chain dehydrogenase/reductase PTR1. Arch Biochem Biophys 1997; 342(2): 197-202. [http://dx.doi.org/10.1006/abbi.1997.0126]. [PMID: 9186479].
[14]
Leprohon P, Légaré D, Raymond F, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 2009; 37(5): 1387-99. [http://dx.doi.org/10.1093/nar/gkn1069]. [PMID: 19129236].
[15]
do Monte-Neto RL, Coelho AC, Raymond F, et al. Gene expression profiling and molecular characterization of antimony resistance in Leishmania amazonensis. PLoS Negl Trop Dis 2011; 5(5)e1167 [http://dx.doi.org/10.1371/journal.pntd.0001167]. [PMID: 21629719].
[16]
Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011; 2(5): 395-401. [http://dx.doi.org/10.4161/viru.2.5.17035]. [PMID: 21921677].
[17]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20. [http://dx.doi.org/10.1021/nn900002m]. [PMID: 19206243].
[18]
Youan BB. Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine 2008; 3(4): 401-6. [http://dx.doi.org/10.2217/17435889.3.4.401]. [PMID: 18694301].
[19]
Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, et al. Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop 2017; 174: 64-71. [http://dx.doi.org/10.1016/j.actatropica.2017.06.025]. [PMID: 28668252].
[20]
Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine 2017; 12: 5289-311. [http://dx.doi.org/10.2147/IJN.S140363]. [PMID: 28794624].
[21]
Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014; 2014651593 [http://dx.doi.org/10.1155/2014/651593]. [PMID: 24971152].
[22]
Zarif L, Mannino RJ. Cochleates. Lipid-based vehicles for gene delivery-concept, achievements and future development. Adv Exp Med Biol 2000; 465: 83-93. [http://dx.doi.org/10.1007/0-306-46817-4_9]. [PMID: 10810618].
[23]
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96. [http://dx.doi.org/10.1016/S0169-409X(01)00105-3]. [PMID: 11311991].
[24]
Hunter CA, Dolan TF, Coombs GH, Baillie AJ. Vesicular systems (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol 1988; 40(3): 161-5. [http://dx.doi.org/10.1111/j.2042-7158.1988.tb05210.x]. [PMID: 2899143].
[25]
Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol 1986; 38(7): 502-5. [http://dx.doi.org/10.1111/j.2042-7158.1986.tb04623.x]. [PMID: 2875149].
[26]
Sharma AK, Keservani RK, Kesharwani RK. Nanobiomaterials: Applications in Drug Delivery. CRC Press 2018. [http://dx.doi.org/10.1201/9781315204918]
[27]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1): 113-31. [http://dx.doi.org/10.1016/S0169-409X(00)00124-1]. [PMID: 11251249].
[28]
Daftarian PM, Stone GW, Kovalski L, et al. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis. J Infect Dis 2013; 208(11): 1914-22. [http://dx.doi.org/10.1093/infdis/jit378]. [PMID: 23901083].
[29]
De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013; 339(6119): 535-9. [http://dx.doi.org/10.1126/science.1222453]. [PMID: 23372006].
[30]
Jebali A, Kazemi B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol In Vitro 2013; 27(6): 1896-904. [http://dx.doi.org/10.1016/j.tiv.2013.06.002]. [PMID: 23806227].
[31]
Berman JD, Hanson WL, Chapman WL, Alving CR, Lopez-Berestein G. Antileishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys. Antimicrob Agents Chemother 1986; 30(6): 847-51. [http://dx.doi.org/10.1128/AAC.30.6.847]. [PMID: 3813512].
[32]
Alving C, Steck EA. The use of liposome-encapsulated drugs in leishmaniasis. Trends Biochem Sci 1979; 4(8): N175-7. [http://dx.doi.org/10.1016/0968-0004(79)90404-3].
[33]
Pham TT, Loiseau PM, Barratt G. Strategies for the design of orally bioavailable antileishmanial treatments. Int J Pharm 2013; 454(1): 539-52. [http://dx.doi.org/10.1016/j.ijpharm.2013.07.035]. [PMID: 23871737].
[34]
Guru PY, Agrawal AK, Singha UK, Singhal A, Gupta CM. Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 1989; 245(1-2): 204-8. [http://dx.doi.org/10.1016/0014-5793(89)80222-4]. [PMID: 2538359].
[35]
Agrawal AK, Agrawal A, Pal A, Guru PY, Gupta CM. Superior chemotherapeutic efficacy of amphotericin B in tuftsin-bearing liposomes against Leishmania donovani infection in hamsters. J Drug Target 2002; 10(1): 41-5. [http://dx.doi.org/10.1080/10611860290007513]. [PMID: 11996085].
[36]
Vázquez-Mendoza A, Carrero JC, Rodriguez-Sosa M. Parasitic infections: a role for C-type lectins receptors. BioMed Res Int 2013; 2013456352 [http://dx.doi.org/10.1155/2013/456352]. [PMID: 23509724].
[37]
Banerjee G, Nandi G, Mahato SB, Pakrashi A, Basu MK. Drug delivery system: Targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 1996; 38(1): 145-50. [http://dx.doi.org/10.1093/jac/38.1.145]. [PMID: 8858467].
[38]
Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo. Drug Deliv 2000; 7(4): 209-13. [http://dx.doi.org/10.1080/107175400455137]. [PMID: 11195427].
[39]
Azevedo EG, Ribeiro RR, da Silva SM, et al. Mixed formulation of conventional and pegylated liposomes as a novel drug delivery strategy for improved treatment of visceral leishmaniasis. Expert Opin Drug Deliv 2014; 11(10): 1551-60. [http://dx.doi.org/10.1517/17425247.2014.932347]. [PMID: 24962630].
[40]
Liu F, Sun Y, Kang C, Hongyan Z. Pegylated Drug Delivery Systems: From Design to Biomedical Applications Nano LIFE 2016; 06(03n04).
[41]
Jeddi F, Piarroux R, Mary C. Antimony resistance in leishmania, focusing on experimental research. J Trop Med 2011; 2011695382 [http://dx.doi.org/10.1155/2011/695382]. [PMID: 22174724].
[42]
Carvalheiro M, Esteves MA, Santos-Mateus D, et al. Hemisynthetic trifluralin analogues incorporated in liposomes for the treatment of leishmanial infections. Eur J Pharm Biopharm 2015; 93: 346-52. [http://dx.doi.org/10.1016/j.ejpb.2015.04.018]. [PMID: 25936854].
[43]
Want MY, Islammudin M, Chouhan G, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine 2017; 12: 2189-204. [http://dx.doi.org/10.2147/IJN.S106548]. [PMID: 28356736].
[44]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system 3. Biotech 2015; 5(2): 123-7.
[45]
Rodrigues IA, Ramos AS, Falcão DQ, et al. Development of Nanoemulsions to Enhance the Antileishmanial Activity of Copaifera paupera Oleoresins. BioMed Res Int 2018.20189781724 [http://dx.doi.org/10.1155/2018/9781724]. [PMID: 29850595].
[46]
Afrin F, Dey T, Anam K, Ali N. Leishmanicidal activity of stearylamine- bearing liposomes in vitro. J Parasitol 2001; 87: (1): 188-93. [http://dx.doi.org/10.1645/0022-3395(2001)087[0188:LAOSBL]2.0.CO;2]. [PMID: 11227889].
[47]
Dey T, Anam K, Afrin F, Ali N. Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother 2000; 44(6): 1739-42. [http://dx.doi.org/10.1128/AAC.44.6.1739-1742.2000]. [PMID: 10817745].
[48]
Caldeira LR, Fernandes FR, Costa DF, Frézard F, Afonso LC, Ferreira LA. Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. Eur J Pharm Sci 2015; 70: 125-31. [http://dx.doi.org/10.1016/j.ejps.2015.01.015]. [PMID: 25660615].
[49]
de Oliveira de Siqueira LB, da Silva Cardoso V, Rodrigues IA, et al. Development and evaluation of zinc phthalocyanine nanoemulsions for use in photodynamic therapy for Leishmania spp. Nanotechnology 2017; 28(6)065101 [http://dx.doi.org/10.1088/1361-6528/28/6/065101]. [PMID: 28071592].
[50]
da Silva Cardoso V, Vermelho AB, Ricci E Junior, Almeida Rodrigues I, Mazotto AM, Supuran CT. Antileishmanial activity of sulphonamide nanoemulsions targeting the β-carbonic anhydrase from Leishmania species. J Enzyme Inhib Med Chem 2018; 33(1): 850-7. [http://dx.doi.org/10.1080/14756366.2018.1463221]. [PMID: 29708476].
[51]
Kvist LP, Christensen SB, Rasmussen HB, Mejia K, Gonzalez A. Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J Ethnopharmacol 2006; 106(3): 390-402. [http://dx.doi.org/10.1016/j.jep.2006.01.020]. [PMID: 16517108].
[52]
Estevez Y, Castillo D, Pisango MT, et al. Evaluation of the leishmanicidal activity of plants used by Peruvian Chayahuita ethnic group. J Ethnopharmacol 2007; 114(2): 254-9. [http://dx.doi.org/10.1016/j.jep.2007.08.007]. [PMID: 17889471].
[53]
Gupta PK, Jaiswal AK, Asthana S, et al. Synergistic enhancement of parasiticidal activity of amphotericin B using copaiba oil in nanoemulsified carrier for oral delivery: an approach for non-toxic chemotherapy. Br J Pharmacol 2015; 172(14): 3596-610. [http://dx.doi.org/10.1111/bph.13149]. [PMID: 25825339].
[54]
Sesana AM, Monti-Rocha R, Vinhas SA, Morais CG, Dietze R, Lemos EM. In vitro activity of amphotericin B cochleates against Leishmania chagasi. Mem Inst Oswaldo Cruz 2011; 106(2): 251-3. [http://dx.doi.org/10.1590/S0074-02762011000200022]. [PMID: 21537689].
[55]
Delmas G, Park S, Chen ZW, et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 2002; 46(8): 2704-7. [http://dx.doi.org/10.1128/AAC.46.8.2704-2707.2002]. [PMID: 12121962].
[56]
Monzote L, Piñón A, Sculli R, Setzer WN. Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Nat Prod Commun 2014; 9(12): 1799-804. [http://dx.doi.org/10.1177/1934578X1400901236]. [PMID: 25632489].
[57]
Tamargo B, Monzote L, Piñón A, et al. In Vitro and In Vivo Evaluation of Essential Oil from Artemisia absinthium L. Formulated in Nanocochleates against Cutaneous Leishmaniasis. Medicines (Basel) 2017; 4(2)E38 [http://dx.doi.org/10.3390/medicines4020038]. [PMID: 28930253].
[58]
Patel PA, Patravale VB. AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 2011; 7(5): 632-9. [http://dx.doi.org/10.1166/jbn.2011.1332]. [PMID: 22195480].
[59]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77. [http://dx.doi.org/10.1016/S0939-6411(00)00087-4]. [PMID: 10840199].
[60]
Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol 2014; 174(4): 1309-30. [http://dx.doi.org/10.1007/s12010-014-1084-y]. [PMID: 25106894].
[61]
Veerareddy PR, Vobalaboina V, Ali N. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J Drug Target 2009; 17(2): 140-7. [http://dx.doi.org/10.1080/10611860802528833]. [PMID: 19089691].
[62]
da Gama Bitencourt JJ, Pazin WM, Ito AS, et al. Miltefosine-loaded lipid nanoparticles: Improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophys Chem 2016; 217: 20-31. [http://dx.doi.org/10.1016/j.bpc.2016.07.005]. [PMID: 27497059].
[63]
Kharaji MH, Doroud D, Taheri T, Rafati S. Drug Targeting to Macrophages With Solid Lipid Nanoparticles Harboring Paromomycin: an In Vitro Evaluation Against L. major and L. tropica. AAPS PharmSciTech 2016; 17(5): 1110-9. [http://dx.doi.org/10.1208/s12249-015-0439-1]. [PMID: 26552399].
[64]
Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Badirzadeh A, Rafati S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol 2016; 38(10): 599-608. [http://dx.doi.org/10.1111/pim.12340]. [PMID: 27213964].
[65]
Pardakhty A, Shakibaie M, Daneshvar H, Khamesipour A, Mohammadi-Khorsand T, Forootanfar H. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul 2012; 29(3): 219-24. [http://dx.doi.org/10.3109/02652048.2011.642016]. [PMID: 22150018].
[66]
Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem (Palo Alto, Calif) 2008; 1: 801-32. [http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747]. [PMID: 20636098].
[67]
Mullen AB, Baillie AJ, Carter KC. Visceral leishmaniasis in the BALB/c mouse: a comparison of the efficacy of a nonionic surfactant formulation of sodium stibogluconate with those of three proprietary formulations of amphotericin B. Antimicrob Agents Chemother 1998; 42(10): 2722-5. [http://dx.doi.org/10.1128/AAC.42.10.2722]. [PMID: 9756784].
[68]
Khazaeli P, Sharifi I, Talebian E, Heravi G, Moazeni E, Mostafavi M. Anti-leishmanial effect of itraconazole niosome on in vitro susceptibility of Leishmania tropica. Environ Toxicol Pharmacol 2014; 38(1): 205-11. [http://dx.doi.org/10.1016/j.etap.2014.04.003]. [PMID: 24956400].
[69]
Alsaadi M, Italia JL, Mullen AB, et al. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection. J Control Release 2012; 160(3): 685-91. [http://dx.doi.org/10.1016/j.jconrel.2012.04.004]. [PMID: 22516093].
[70]
Aflatoonian M, Fekri A, Rahnam Z, et al. The efficacy of combined topical niosomal dapsone gel and intralesional injection of meglumine antimoniate in comparison with intralesional meglumine antimoniate and cryotherapy in the treatment of cutaneous leishmaniasis. J Pak Assoc Dermatol 2016; 26(4): 353-60.
[71]
Nazari-Vanani R, Vais RD, Sharifi F, et al. Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop 2018; 185: 69-76. [http://dx.doi.org/10.1016/j.actatropica.2018.05.002]. [PMID: 29733808].
[72]
Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 2016; 45(1): 152-68. [http://dx.doi.org/10.1039/C5CS00674K]. [PMID: 26487097].
[73]
Barros D, Costa Lima SA, Cordeiro-da-Silva A. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in leishmaniasis therapy. Nanomedicine 2015; 10(3): 387-403. [http://dx.doi.org/10.2217/nnm.14.116]. [PMID: 25707974].
[74]
Nan A, Croft SL, Yardley V, Ghandehari H. Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. J Control Release 2004; 94(1): 115-27. [http://dx.doi.org/10.1016/j.jconrel.2003.09.012]. [PMID: 14684276].
[75]
Kumar R, Sahoo GC, Pandey K, et al. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater Sci Eng C 2016; 59: 748-53. [http://dx.doi.org/10.1016/j.msec.2015.10.083]. [PMID: 26652429].
[76]
Van de Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 2012; 161(3): 795-803. [http://dx.doi.org/10.1016/j.jconrel.2012.05.037]. [PMID: 22641062].
[77]
Halder A, Shukla D, Das S, Roy P, Mukherjee A, Saha B. Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine 2018; 110: 412-5. [http://dx.doi.org/10.1016/j.cyto.2018.05.010]. [PMID: 29784509].
[78]
Anand N, Kanwar RK, Dubey ML, et al. Effect of lactoferrin protein on red blood cells and macrophages: Mechanism of parasite-host interaction. Drug Des Devel Ther 2015; 9: 3821-35. [PMID: 26251568].
[79]
Souza AC, Nascimento AL, de Vasconcelos NM, et al. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur J Med Chem 2015; 95: 267-76. [http://dx.doi.org/10.1016/j.ejmech.2015.03.022]. [PMID: 25827397].
[80]
Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 2013; 18(6): 397-400. [http://dx.doi.org/10.1016/j.rpor.2013.09.011]. [PMID: 24416585].
[81]
de Carvalho RF, Ribeiro IF, Miranda-Vilela AL, et al. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol 2013; 135(2): 217-22. [http://dx.doi.org/10.1016/j.exppara.2013.07.008]. [PMID: 23891944].
[82]
Scala A, Piperno A, Micale N, et al. “Click” on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates. J Biomed Mater Res B Appl Biomater 2018; 106(8): 2778-85. [PMID: 29219244].
[83]
Monteiro LM, Löbenberg R, Ferreira EI, et al. Targeting Leishmania amazonensis amastigotes through macrophage internalisation of a hydroxymethylnitrofurazone nanostructured polymeric system. Int J Antimicrob Agents 2017; 50(1): 88-92. [http://dx.doi.org/10.1016/j.ijantimicag.2017.01.033]. [PMID: 28454918].
[84]
do Nascimento TG, da Silva PF, Azevedo LF, et al. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. Nanoscale Res Lett 2016; 11(1): 301. [http://dx.doi.org/10.1186/s11671-016-1517-3]. [PMID: 27316742].
[85]
Van de Ven H, Vermeersch M, Matheeussen A, et al. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int J Pharm 2011; 420(1): 122-32. [http://dx.doi.org/10.1016/j.ijpharm.2011.08.016]. [PMID: 21864661].
[86]
Singh PK, Pawar VK, Jaiswal AK, et al. Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in experimental visceral leishmaniasis. Int J Biol Macromol 2017; 105(Pt 1): 1220-31. [http://dx.doi.org/10.1016/j.ijbiomac.2017.07.161]. [PMID: 28780414].
[87]
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. Biochim Biophys Acta 2013; 1833(5): 1065-77. [http://dx.doi.org/10.1016/j.bbamcr.2013.01.006]. [PMID: 23328080].
[88]
Krishnamurthy G, Vikram R, Singh SB, et al. Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem 2005; 280(7): 5884-91. [http://dx.doi.org/10.1074/jbc.M411845200]. [PMID: 15579464].
[89]
Bose PP, Kumar P, Dwivedi MK. Hemoglobin guided nanocarrier for specific delivery of amphotericin B to Leishmania infected macrophage. Acta Trop 2016; 158: 148-59. [http://dx.doi.org/10.1016/j.actatropica.2016.02.026]. [PMID: 26945483].
[90]
Kumar P, Bose PP. Targeted Delivery of Paromomycin to Leishmania Infected Macrophage by Hemoglobin Tagged Nanocarrier. J App Pharm 2016; 8(212) [http://dx.doi.org/10.4172/1920-4159.1000212].
[91]
Mendonça DVC, Martins VT, Lage DP, et al. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Exp Parasitol 2018; 186: 24-35. [http://dx.doi.org/10.1016/j.exppara.2018.02.003]. [PMID: 29448040].
[92]
Duarte MC, Lage LM, Lage DP, et al. Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitol Int 2016; 65(6 Pt A): 728-36. [http://dx.doi.org/10.1016/j.parint.2016.07.005]. [PMID: 27425599].
[93]
Sk UH. Antimicrobial Nanoarchitectonics: From Synthesis To Applications. Chapter 12: Nanosize Dendrimers: Potential Use as Carriers and Antimicrobials. Oxford, United Kingdom: Elsevier Inc 2017.
[94]
Giarolla J, Pasqualoto KF, Ferreira EI. Design and exploratory data analysis of a second generation of dendrimer prodrugs potentially antichagasic and leishmanicide. Mol Divers 2013; 17(4): 711-20. [http://dx.doi.org/10.1007/s11030-013-9467-5]. [PMID: 23990201].
[95]
da Silva Santos S, Giarolla J, Pasqualoto KF, Ferreira EI. In silico study to analyse the disassembly of quercetin-targeted dendrimers potentially leishmanicide. Mol Simul 2015; 41(18): 1495-508. [http://dx.doi.org/10.1080/08927022.2014.994622].
[96]
Jain K, Verma AK, Mishra PR, Jain NK. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob Agents Chemother 2015; 59(5): 2479-87. [http://dx.doi.org/10.1128/AAC.04213-14]. [PMID: 25645852].
[97]
Caballero A, Salas, JM, Sánchez-Moreno, M. Metal-Based Therapeutics for Leishmaniasis. IntechOpen 2014.
[98]
Navarro M, Gabbiani C, Messori L, Gambino D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov Today 2010; 15(23-24): 1070-8. [http://dx.doi.org/10.1016/j.drudis.2010.10.005]. [PMID: 20974285].
[99]
Fricker SP. Cysteine proteases as targets for metal-based drugs. Metallomics 2010; 2(6): 366-77. [http://dx.doi.org/10.1039/b924677k]. [PMID: 21072382].
[100]
Fricker SP, Mosi RM, Cameron BR, et al. Metal compounds for the treatment of parasitic diseases. J Inorg Biochem 2008; 102(10): 1839-45. [http://dx.doi.org/10.1016/j.jinorgbio.2008.05.010]. [PMID: 18684510].
[101]
Minodier P, Parola P. Cutaneous leishmaniasis treatment. Travel Med Infect Dis 2007; 5(3): 150-8. [http://dx.doi.org/10.1016/j.tmaid.2006.09.004]. [PMID: 17448941].
[102]
Najim RA, Sharquie KE, Farjou IB. Zinc sulphate in the treatment of cutaneous leishmaniasis: an in vitro and animal study. Mem Inst Oswaldo Cruz 1998; 93(6): 831-7. [http://dx.doi.org/10.1590/S0074-02761998000600025]. [PMID: 9921312].
[103]
Fattahi Bafghi A, Noorbala M, Noorbala MT, Aghabagheri M. Anti Leishmanial Effect of Zinc Sulphate on the Viability of Leishmania tropica and L. major Promastigotes. Jundishapur J Microbiol 2014; 7(9)e11192 [http://dx.doi.org/10.5812/jjm.11192]. [PMID: 25485055].
[104]
Sharquie KE, Najim RA, Al-Hayani RK, Al-Nuaimy AA, Maroof DM. The therapeutic and prophylactic role of oral zinc sulfate in management of recurrent aphthous stomatitis (ras) in comparison with dapsone. Saudi Med J 2008; 29(5): 734-8. [PMID: 18454224].
[105]
Iraji F, Vali A, Asilian A, Shahtalebi MA, Momeni AZ. Comparison of intralesionally injected zinc sulfate with meglumine antimoniate in the treatment of acute cutaneous leishmaniasis. Dermatology (Basel) 2004; 209(1): 46-9. [http://dx.doi.org/10.1159/000078586]. [PMID: 15237267].
[106]
Firooz A, Khatami A, Khamesipour A, et al. Intralesional injection of 2% zinc sulfate solution in the treatment of acute old world cutaneous leishmaniasis: A randomized, double-blind, controlled clinical trial. J Drugs Dermatol 2005; 4(1): 73-9. [PMID: 15696988].
[107]
Soflaei S, Dalimi A, Abdoli A, et al. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol 2014; 23(1): 15-20. [http://dx.doi.org/10.1007/s00580-012-1561-z].
[108]
Chaurasia M, Singh PK, Jaiswal AK, et al. Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Pharm Res 2016; 33(11): 2617-29. [http://dx.doi.org/10.1007/s11095-016-1985-2]. [PMID: 27401407].
[109]
Saudagar P, Dubey VK. Carbon nanotube based betulin formulation shows better efficacy against Leishmania parasite. Parasitol Int 2014; 63(6): 772-6. [http://dx.doi.org/10.1016/j.parint.2014.07.008]. [PMID: 25086374].
[110]
Prajapati VK, Awasthi K, Gautam S, et al. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 2011; 66(4): 874-9. [http://dx.doi.org/10.1093/jac/dkr002]. [PMID: 21393222].
[111]
Prajapati VK, Awasthi K, Yadav TP, Rai M, Srivastava ON, Sundar S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis 2012; 205(2): 333-6. [http://dx.doi.org/10.1093/infdis/jir735]. [PMID: 22158723].
[112]
Nadhman A, Nazir S, Khan MI, et al. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans. Int J Nanomedicine 2015; 10: 6891-903. [PMID: 26604755].
[113]
Nadhman A, Nazir S, Khan MI, et al. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic Biol Med 2014; 77: 230-8. [http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.005]. [PMID: 25266330].
[114]
Ahmad A, Wei Y, Syed F, et al. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. J Photochem Photobiol B 2016; 161: 17-24. [http://dx.doi.org/10.1016/j.jphotobiol.2016.05.003]. [PMID: 27203567].
[115]
Kumar R, Pandey K, Sahoo GC, et al. Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis. Mater Sci Eng C 2017; 75: 1465-71. [http://dx.doi.org/10.1016/j.msec.2017.02.145]. [PMID: 28415438].
[116]
Ahmad A, Wei Y, Ullah S, et al. Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microb Pathog 2017; 110: 304-12. [http://dx.doi.org/10.1016/j.micpath.2017.07.009]. [PMID: 28705747].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 14
Year: 2019
Published on: 15 August, 2019
Page: [1582 - 1592]
Pages: 11
DOI: 10.2174/1381612825666190621154552
Price: $65

Article Metrics

PDF: 37
HTML: 6