The use of Sulfonamide Derivatives in the Treatment of Trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp

Author(s): Cauê B. Scarim*, Rafael C. Chelucci, Jean L. dos Santos, Chung M. Chin.

Journal Name: Medicinal Chemistry

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

More than 10 million people around the world are afflicted by Neglected Tropical Diseases, such as Chagas Disease, Human African Trypanosomiasis, and Leishmania. These diseases mostly occur in undeveloped countries that suffer from a lack of economic incentive, research, and policy for new compound development. Sulfonamide moieties are effective scaffolds present in several compounds that are determinants to treat various diseases, principally neglected tropical diseases. This review article examines the contribution of these scaffolds in medicinal chemistry in the last five years, focusing on three trypanosomatid parasites: Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp. We also present perspectives for their use in drug designs in an effort to contribute to new drug development. In addition, we consider the physicochemical parameters, whose molecules all presented according to Lipinski's rule. The correlation between the selective index and LogP was evaluated, showing that sulfonamide derivatives can act differently against each trypanosomatid parasite. Moreover, the approaches of novel drugs and technologies are very important for the eventual drug discovery against trypanosomatid diseases.

Keywords: Sulfonamides, new compounds, Chagas disease, Human African Trypanosomiasis (HAT), leishmania, tropical Diseases.

[1]
Żołnowska, B.; Sławiński, J.; Brzozowski, Z.; Kawiak, A.; Belka, M.; Zielińska, J.; Bączek, T.; Chojnacki, J. Synthesis, molecular structure, anticancer activity, and QSAR study of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamide derivatives. Int. J. Mol. Sci., 2018, 19(5), 1-23.
[http://dx.doi.org/10.3390/ijms19051482] [PMID: 29772699]
[2]
Vanga, S.R.; Sävmarker, J.; Ng, L.; Larhed, M.; Hallberg, M.; Åqvist, J.; Hallberg, A.; Chai, S.Y.; Gutiérrez-de-Terán, H. Structural basis of inhibition of human insulin-regulated aminopeptidase (IRAP) by aryl sulfonamides. ACS Omega, 2018, 3(4), 4509-4521.
[http://dx.doi.org/10.1021/acsomega.8b00595] [PMID: 30023895]
[3]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[4]
Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Buonanno, M.; Monti, S.M.; Tiwari, M.; Supuran, C.T. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal. Eur. J. Med. Chem., 2018, 156, 430-443.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.019] [PMID: 30015076]
[5]
Markowicz-piasecka, M.; Huttunen, K.M.; Mateusiak, Ł.; Mikiciuk-Olasik, E.; Sikora, J. Chemico-Biological Interactions Sulfenamide and sulfonamide derivatives of metformin can exert anticoagulant and pro fi brinolytic properties. Chem. Biol. Interact., 2018, 284, 126-136.
[http://dx.doi.org/10.1016/j.cbi.2018.02.012] [PMID: 29458015]
[6]
Li, X.Y.; Liang, J.W.; Mohamed, O.K.; Zhang, T.J.; Lu, G.Q.; Meng, F.H. Design, synthesis and biological evaluation of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)benzoyl hydrazide derivatives as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur. J. Med. Chem., 2018, 154, 267-279.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.020] [PMID: 29807332]
[7]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006] [PMID: 29698921]
[8]
Gao, D.D.; Dou, H.X.; Su, H.X.; Zhang, M.M.; Wang, T.; Liu, Q.F.; Cai, H.Y.; Ding, H.P.; Yang, Z.; Zhu, W.L.; Xu, Y.C.; Wang, H.Y.; Li, Y.X. From hit to lead: Structure-based discovery of naphthalene-1-sulfonamide derivatives as potent and selective inhibitors of fatty acid binding protein 4. Eur. J. Med. Chem., 2018, 154, 44-59.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.007] [PMID: 29775936]
[9]
Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies. Bioorg. Chem., 2018, 81, 481-493.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.021] [PMID: 30243239]
[10]
Badgujar, J.R.; More, D.H.; Meshram, J.S. Synthesis, Antimicrobial and Antioxidant Activity of Pyrazole Based Sulfonamide Derivatives. Indian J. Microbiol., 2018, 58(1), 93-99.
[http://dx.doi.org/10.1007/s12088-017-0689-6] [PMID: 29434402]
[11]
Abbas, H.S.; Abd El-Karim, S.S.; Abdelwahed, N.A.M. Synthesis and biological evaluation of sulfonamide derivatives as antimicrobial agents. Acta Pol. Pharm., 2017, 74(3), 849-860.
[PMID: 29513954]
[12]
Abbasi, M.A.; Hassan, M. Aziz-Ur-Rehman.; Siddiqui, S.Z.; Shah, S.A.A.; Raza, H.; Seo, S.Y. Synthesis, enzyme inhibitory kinetics mechanism and computational study of N-(4-methoxyphenethyl)-N-(substituted)-4-methylbenzenesulfonamides as novel therapeutic agents for Alzheimer’s disease. PeerJ, 2018, 6e, 4962.
[http://dx.doi.org/10.7717/peerj.4962] [PMID: 29967717]
[13]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[14]
Papadopoulou, M.V.; Ji, M.; Bloomer, W.D. Novel fluorinated hypoxia-targeted compounds as Non-invasive probes for measuring tumor-hypoxia by 19F-magnetic resonance spectroscopy (19F-MRS). Anticancer Res., 2006, 26(5A), 3253-3258.
[PMID: 17094437]
[15]
DNDi, Drugs for Neglected Diseases initiative (DNDi), Neglected Tropical Diseases https://www.dndi.org/diseases-projects/chagas/ (Accessed 26 January 2019)
[16]
WHO. World and Health Organization (WHO), Neglected tropical diseases . http://www.who.int/neglected_diseases/diseases/en/ (Accessed 26 January 2019)
[17]
Sherlock, I.A. Epidemiology and dynamics of the vectorial transmission of Chagas disease. Mem. Inst. Oswaldo Cruz, 1999, 94(Suppl. 1), 385-386.
[http://dx.doi.org/10.1590/S0074-02761999000700075] [PMID: 10677761]
[18]
Rassi, A., Jr; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet, 2010, 375(9723), 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[19]
Brener, Z.; Andrade, Z.; Barral-Netto, M. Trypanooma cruzi e Doença de Chagas, 2nd ed; Rio de Janeiro. Guanabara Koogan, 2000, p. 431.
[20]
Chagas, C. Nova Tripanozomiase Humana. Estudos Sobre a Morfolojia e o Ciclo Evolutivo Do Schizotrypanum Cruzi n. Gen. n. Sp., Agente Etiolójico de Uma Nova Entidade Mórbida Do Homem. Mem. Inst. Oswaldo Cruz, 1909, 1(2), 159-218.
[21]
Dias, J.C.P.; Coura, J.R. Clínica e terapêutica da doença de Chagas, uma abordagem Geral, pratica para o clínico. Cad. Saude Publica, 1997, 486.
[22]
Jabari, S.; de Oliveira, E.C.; Brehmer, A.; da Silveira, A.B. Chagasic megacolon: entericneurons and related structures. Histochem. Cell Biol., 2014, 42, 235-244.
[23]
Fuentes, B.R.; Maturana, A.M.; de la Cruz, M.R. Eficacia de nifurtimox para el tratamiento de pacientes con enfermedad de Chagas cronica. Rev. Chilena Infectol., 2012, 29, 82-86.
[24]
Control of Chagas disease: second report of the WHO expert committee World Health Organization (2000: Brasilia, Brazil). Geneva World Heal., 2002, 905, 109.
[25]
Maya, J.D.; Orellana, M.; Ferreira, J.; Kemmerling, U.; López-Muñoz, R.; Morello, A. Chagas disease: present status of pathogenic mechanisms and chemotherapy. Biol. Res., 2010, 43(3), 323-231.
[http://dx.doi.org/10.4067/S0716-97602010000300009]
[26]
Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25(8), 471-479.
[http://dx.doi.org/10.1191/0960327106het653oa] [PMID: 16937919]
[27]
Andrade, M.C. Oliveira, Mde.F.; Nagao-Dias, A.T.; Coêlho, I.C.; Cândido, Dda. S.; Freitas, E.C.; Coelho, H.L.; Bezerra, F.S. Clinical and serological evolution in chronic Chagas disease patients in a 4-year pharmacotherapy follow-up: a preliminary study. Rev. Soc. Bras. Med. Trop., 2013, 46(6), 776-778.
[http://dx.doi.org/10.1590/0037-8682-1646-2013] [PMID: 24474023]
[28]
Fernández, M.L.; Marson, M.E.; Ramirez, J.C.; Mastrantonio, G.; Schijman, A.G.; Altcheh, J.; Riarte, A.R.; Bournissen, F.G. Pharmacokinetic and pharmacodynamic responses in adult patients with Chagas disease treated with a new formulation of benznidazole. Mem. Inst. Oswaldo Cruz, 2016, 111(3), 218-221.
[http://dx.doi.org/10.1590/0074-02760150401] [PMID: 26982179]
[29]
Soy, D.; Aldasoro, E.; Guerrero, L.; Posada, E.; Serret, N.; Mejía, T.; Urbina, J.A.; Gascón, J. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob. Agents Chemother., 2015, 59(6), 3342-3349.
[http://dx.doi.org/10.1128/AAC.05018-14] [PMID: 25824212]
[30]
Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; Guhl, F.; Velazquez, E.; Bonilla, L.; Meeks, B.; Rao-Melacini, P.; Pogue, J.; Mattos, A.; Lazdins, J.; Rassi, A.; Connolly, S.J.; Yusuf, S. Randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N. Engl. J. Med., 2015, 373(14), 1295-1306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[31]
Sperandio da Silva, G.M.; Mediano, M.F.F.; Alvarenga Americano do Brasil, P.E.; da Costa Chambela, M.; da Silva, J.A.; de Sousa, A.S.; Xavier, S.S.; Rodrigues da Costa, A.; Magalhães Saraiva, R.; Hasslocher-Moreno, A.M. A clinical adverse drug reaction prediction model for patients with chagas disease treated with benznidazole. Antimicrob. Agents Chemother., 2014, 58(11), 6371-6377.
[http://dx.doi.org/10.1128/AAC.02842-14] [PMID: 25114135]
[32]
Sosa Estani, S.; Segura, E.L.; Ruiz, A.M.; Velazquez, E.; Porcel, B.M.; Yampotis, C. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am. J. Trop. Med. Hyg., 1998, 59(4), 526-529.
[http://dx.doi.org/10.4269/ajtmh.1998.59.526] [PMID: 9790423]
[33]
de Andrade, A.L.S.S.; Zicker, F.; de Oliveira, R.M.; Almeida Silva, S.; Luquetti, A.; Travassos, L.R.; Almeida, I.C.; de Andrade, S.S.; de Andrade, J.G.; Martelli, C.M.T. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet, 1996, 348(9039), 1407-1413.
[http://dx.doi.org/10.1016/S0140-6736(96)04128-1] [PMID: 8937280]
[34]
Pan, P.; Vermelho, A.B.; Capaci Rodrigues, G.; Scozzafava, A.; Tolvanen, M.E.; Parkkila, S.; Capasso, C.; Supuran, C.T. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J. Med. Chem., 2013, 56(4), 1761-1771.
[http://dx.doi.org/10.1021/jm4000616] [PMID: 23391336]
[35]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Kaiser, M. Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur. J. Med. Chem., 2014, 87, 79-88.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.045] [PMID: 25240098]
[36]
Peres, R.B.; Ullah, A.I.; de Almeida Fiuza, L.F.; Silva, P.B.; Batista, M.M.; Corcoran, O.; Reddy, T.R.K.; de Nazaré Correia Soeiro, M. Identification and preliminary structure-activity relationship studies of novel pyridyl sulfonamides as potential Chagas disease therapeutic agents. Bioorg. Med. Chem. Lett., 2018, 28(11), 2018-2022.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.064] [PMID: 29748049]
[37]
Vieira, D.F.; Choi, J.Y.; Roush, W.R.; Podust, L.M. Expanding the binding envelope of CYP51 inhibitors targeting Trypanosoma cruzi with 4-aminopyridyl-based sulfonamide derivatives. ChemBioChem, 2014, 15(8), 1111-1120.
[http://dx.doi.org/10.1002/cbic.201402027] [PMID: 24771705]
[38]
Alafeefy, A.M.; Ceruso, M.; Al-Jaber, N.A.; Parkkila, S.; Vermelho, A.B.; Supuran, C.T. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 581-585.
[http://dx.doi.org/10.3109/14756366.2014.956309] [PMID: 25373503]
[39]
Marchiori, M.F.; Riul, T.B.; Oliveira Bortot, L.; Andrade, P.; Junqueira, G.G.; Foca, G.; Doti, N.; Ruvo, M.; Dias-Baruffi, M.; Carvalho, I.; Campo, V.L. Binding of triazole-linked galactosyl arylsulfonamides to galectin-3 affects Trypanosoma cruzi cell invasion. Bioorg. Med. Chem., 2017, 25(21), 6049-6059.
[http://dx.doi.org/10.1016/j.bmc.2017.09.042] [PMID: 29032929]
[40]
Chohan, Z.H.; Hernandes, M.Z.; Sensato, F.R.; Moreira, D.R.M.; Pereira, V.R.; Neves, J.K.; de Oliveira, A.P.; de Oliveira, B.C.; Leite, A.C. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 230-236.
[http://dx.doi.org/10.3109/14756366.2013.766608] [PMID: 23432595]
[41]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[42]
Tabel, H.; Wei, G.; Shi, M. T cells and immunopathogenesis of experimental African trypanosomiasis. Immunol. Rev., 2008, 225, 128-139.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00675.x] [PMID: 18837780]
[43]
WHO, World and Health Organization (WHO), Trypanosomiasis Human African. Trypanosomiasis Human African (Sleeping Sickness). . (Accessed 26 January 2019)
[44]
Barrett, M.P.; Burchmore, R.J.; Stich, A.; Lazzari, J.O.; Frasch, A.C.; Cazzulo, J.J.; Krishna, S. The trypanosomiases. Lancet, 2003, 362(9394), 1469-1480.
[http://dx.doi.org/10.1016/S0140-6736(03)14694-6] [PMID: 14602444]
[45]
Mehlitz, D.; Zillmann, U.; Scott, C.M.; Godfrey, D.G. Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed. Parasitol., 1982, 33(2), 113-118.
[PMID: 6287687]
[46]
Hoare, C.A. The trypanosomes of mammals: a zoological monograph; Cecil A. H, 1972, p. 749.
[47]
Sykes, M.L.; Baell, J.B.; Kaiser, M.; Chatelain, E.; Moawad, S.R.; Ganame, D.; Ioset, J.R.; Avery, V.M. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Negl. Trop. Dis., 2012, 6(11) e1896
[http://dx.doi.org/10.1371/journal.pntd.0001896] [PMID: 23209849]
[48]
Tatipaka, H.B.; Gillespie, J.R.; Chatterjee, A.K.; Norcross, N.R.; Hulverson, M.A.; Ranade, R.M.; Nagendar, P.; Creason, S.A.; McQueen, J.; Duster, N.A.; Nagle, A.; Supek, F.; Molteni, V.; Wenzler, T.; Brun, R.; Glynne, R.; Buckner, F.S.; Gelb, M.H. Substituted 2-phenylimidazopyridines: a new class of drug leads for human African trypanosomiasis. J. Med. Chem., 2014, 57(3), 828-835.
[http://dx.doi.org/10.1021/jm401178t] [PMID: 24354316]
[49]
Stewart, M.L.; Boussard, C.; Brun, R.; Gilbert, I.H.; Barrett, M.P. Interaction of monobenzamidine-linked trypanocides with the Trypanosoma brucei P2 aminopurine transporter. Antimicrob. Agents Chemother., 2005, 49(12), 5169-5171.
[http://dx.doi.org/10.1128/AAC.49.12.5169-5171.2005] [PMID: 16304196]
[50]
Brun, R.; Balmer, O. New developments in human African trypanosomiasis. Curr. Opin. Infect. Dis., 2006, 19(5), 415-420.
[http://dx.doi.org/10.1097/01.qco.0000244045.93016.b1] [PMID: 16940863]
[51]
Simarro, P.P.; Diarra, A.; Ruiz Postigo, J.A.; Franco, J.R.; Jannin, J.G. The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000-2009: the way forward. PLoS Negl. Trop. Dis., 2011, 5(2)e1007
[http://dx.doi.org/10.1371/journal.pntd.0001007] [PMID: 21364972]
[52]
Ugwu, D.I.; Okoro, U.C.; Mishra, N.K. Synthesis of proline derived benzenesulfonamides: A potent anti-Trypanosoma brucei gambiense agent. Eur. J. Med. Chem., 2018, 154, 110-116.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.017] [PMID: 29778893]
[53]
Brand, S.; Cleghorn, L.A.T.; McElroy, S.P.; Robinson, D.A.; Smith, V.C.; Hallyburton, I.; Harrison, J.R.; Norcross, N.R.; Spinks, D.; Bayliss, T.; Norval, S.; Stojanovski, L.; Torrie, L.S.; Frearson, J.A.; Brenk, R.; Fairlamb, A.H.; Ferguson, M.A.J.; Read, K.D.; Wyatt, P.G.; Gilbert, I.H. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J. Med. Chem., 2012, 55(1), 140-152.
[http://dx.doi.org/10.1021/jm201091t] [PMID: 22148754]
[54]
Brand, S.; Norcross, N.R.; Thompson, S.; Harrison, J.R.; Smith, V.C.; Robinson, D.A.; Torrie, L.S.; McElroy, S.P.; Hallyburton, I.; Norval, S.; Scullion, P.; Stojanovski, L.; Simeons, F.R.C.; van Aalten, D.; Frearson, J.A.; Brenk, R.; Fairlamb, A.H.; Ferguson, M.A.J.; Wyatt, P.G.; Gilbert, I.H.; Read, K.D. Lead optimization of a pyrazole sulfonamide series of Trypanosoma brucei N-myristoyltransferase inhibitors: identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human African trypanosomiasis. J. Med. Chem., 2014, 57(23), 9855-9869.
[http://dx.doi.org/10.1021/jm500809c] [PMID: 25412409]
[55]
Rashad, A.A.; Jones, A.J.; Avery, V.M.; Baell, J.; Keller, P.A. Facile synthesis and preliminary structure-activity analysis of new sulfonamides against Trypanosoma brucei. ACS Med. Chem. Lett., 2014, 5(5), 496-500.
[http://dx.doi.org/10.1021/ml400487t] [PMID: 24900868]
[56]
Hackler, A.; Patrick, S.L.; Kahney, E.W.; Flaherty, D.P.; Sharlow, E.R.; Morris, J.C.; Golden, J.E. Antiparasitic lethality of sulfonamidebenzamides in kinetoplastids. Bioorg. Med. Chem. Lett., 2017, 27(4), 755-758.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.043] [PMID: 28119024]
[57]
WHO. Leishmaniasis. World Health Organization Available at: . http://www.who.int/leishmaniasis/en/ [Accessed 27 January 2019]
[58]
Pathak, R.; Batra, S. Malaria and leishmaniasis: current status of chemotherapy, new leads and targets for drug discovery. Antiinfect. Agents, 2009, 8, 226-267.
[59]
Henry, R.J. The mode of action of sulfonamides. Bacteriol. Rev., 1943, 7(4), 175-262.
[PMID: 16350088]
[60]
Peixoto, M.P.; Beverley, S.M. In vitro activity of sulfonamides and sulfones against Leishmania major promastigotes. Antimicrob. Agents Chemother., 1987, 31(10), 1575-1578.
[http://dx.doi.org/10.1128/AAC.31.10.1575] [PMID: 3435106]
[61]
Vickers, T.J.; Beverley, S.M. Folate metabolic pathways in Leishmania. Essays Biochem., 2011, 51, 63-80.
[http://dx.doi.org/10.1042/bse0510063] [PMID: 22023442]
[62]
Morgenthaler, J.B.; Peters, S.J.; Cedeño, D.L.; Constantino, M.H.; Edwards, K.A.; Kamowski, E.M.; Passini, J.C.; Butkus, B.E.; Young, A.M.; Lash, T.D.; Jones, M.A. Carbaporphyrin ketals as potential agents for a new photodynamic therapy treatment of leishmaniasis. Bioorg. Med. Chem., 2008, 16(14), 7033-7038.
[http://dx.doi.org/10.1016/j.bmc.2008.05.037] [PMID: 18541431]
[63]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[64]
Baquedano, Y.; Moreno, E.; Espuelas, S.; Nguewa, P.; Font, M.; Gutierrez, K.J.; Jiménez-Ruiz, A.; Palop, J.A.; Sanmartín, C. Novel hybrid selenosulfonamides as potent antileishmanial agents. Eur. J. Med. Chem., 2014, 74, 116-123.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.030] [PMID: 24448421]
[65]
Ceruso, M.; Carta, F.; Osman, S.M.; Alothman, Z.; Monti, S.M.; Supuran, C.T. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg. Med. Chem., 2015, 23(15), 4181-4187.
[http://dx.doi.org/10.1016/j.bmc.2015.06.050] [PMID: 26145821]
[66]
Dikhit, M.R.; Purkait, B.; Singh, R.; Sahoo, B.R.; Kumar, A.; Kar, R.K.; Ansari, M.Y.; Saini, S.; Abhishek, K.; Sahoo, G.C.; Das, S.; Das, P. Activity of a novel sulfonamide compound 2-nitro-N-(pyridin-2-ylmethyl)benzenesulfonamide against Leishmania donovani. Drug Des. Devel. Ther., 2016, 10, 1753-1761.
[PMID: 27307706]
[67]
Katinas, J.; Epplin, R.; Hamaker, C.; Jones, M.A. Sulfonamides as Inhibitors of Leishmania - Potential New Treatments for Leishmaniasis. Antiinfect. Agents, 2017, 15(1), 57-62.
[http://dx.doi.org/10.2174/2211352515666170216143401] [PMID: 29399442]
[68]
Chua, M.J.; Arnold, M.S.J.; Xu, W.; Lancelot, J.; Lamotte, S.; Späth, G.F.; Prina, E.; Pierce, R.J.; Fairlie, D.P.; Skinner-Adams, T.S.; Andrews, K.T. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 42-50.
[http://dx.doi.org/10.1016/j.ijpddr.2016.12.005] [PMID: 28107750]
[69]
Stiles, J.K.; Kucerova, Z.; Sarfo, B.; Meade, C.A.; Thompson, W.; Shah, P.; Xue, L.; Meade, J.C. Identification of surface-membrane P-type ATPases resembling fungal K(+)- and Na(+)-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Ann. Trop. Med. Parasitol., 2003, 97(4), 351-366.
[http://dx.doi.org/10.1179/000349803235002362] [PMID: 12831521]
[70]
de Almeida-Amaral, E.E.; Caruso-Neves, C.; Pires, V.M.; Meyer-Fernandes, J.R. Leishmania amazonensis: characterization of an ouabain-insensitive Na+-ATPase activity. Exp. Parasitol., 2008, 118(2), 165-171.
[http://dx.doi.org/10.1016/j.exppara.2007.07.001] [PMID: 17825292]
[71]
Arruda-Costa, N.; Escrivani, D.; Almeida-Amaral, E.E.; Meyer-Fernandes, J.R.; Rossi-Bergmann, B. Anti-parasitic effect of the diuretic and Na+-ATPAse inhibitor furosemide in cutaneous leishmaniasis. Parasitology, 2017, 144(10), 1375-1383.
[http://dx.doi.org/10.1017/S0031182017000695] [PMID: 28583224]
[72]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[73]
Curatolo, W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings. Pharm. Sci. Technol. Today, 1998, 1, 387-393.
[http://dx.doi.org/10.1016/S1461-5347(98)00097-2]
[74]
Wenlock, M.C.; Barton, P. In silico physicochemical parameter predictions. Mol. Pharm., 2013, 10(4), 1224-1235.
[http://dx.doi.org/10.1021/mp300537k] [PMID: 23305561]
[75]
Tetko, I.V. Computing chemistry on the web. Drug Discov. Today, 2005, 10(22), 1497-1500.
[http://dx.doi.org/10.1016/S1359-6446(05)03584-1] [PMID: 16257371]
[76]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[http://dx.doi.org/10.1016/S0169-409X(96)00423-1]
[77]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[78]
Zuniga, E.S.; Early, J.; Parish, T. The future for early-stage tuberculosis drug discovery. Future Microbiol., 2015, 10(2), 217-229.
[http://dx.doi.org/10.2217/fmb.14.125] [PMID: 25689534]
[79]
Manjunatha, U.H.; Smith, P.W. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening. Bioorg. Med. Chem., 2015, 23(16), 5087-5097.
[http://dx.doi.org/10.1016/j.bmc.2014.12.031] [PMID: 25577708]
[80]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[81]
Chen, M.; Borlak, J.; Tong, W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology, 2013, 58(1), 388-396.
[http://dx.doi.org/10.1002/hep.26208] [PMID: 23258593]
[82]
Tarcsay, Á.; Keserű, G.M. Contributions of molecular properties to drug promiscuity. J. Med. Chem., 2013, 56(5), 1789-1795.
[http://dx.doi.org/10.1021/jm301514n] [PMID: 23356819]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [24 - 38]
Pages: 15
DOI: 10.2174/1573406415666190620141109
Price: $65

Article Metrics

PDF: 26
HTML: 6
EPUB: 1
PRC: 1