Antimicrobial Peptides: An Approach to Combat Resilient Infections

Author(s): Debaprasad Parai*, Pia Dey, Samir K. Mukherjee

Journal Name: Current Drug Discovery Technologies

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: It was apparent by the end of 1980s that the success against the threats of bacterial pathogens on public health was an illusion, with the rapid development of resistant strains more than the discovery of new drugs. As a consequence, the remedial services were in the backfoot position of being on the losing side of this never-ending evolutionary war. The quest for new antibiotics to overcome resistance problems has long been a top research priority for the researchers and the pharmaceutical industry. However, the resistance problems remain unresolved due to the abrupt misuse of antibiotics by common people, which has immensely worsened the scenario by disseminating antibiotic-resistant bacterial strains around the world.

Objective: Thus, immediate action is needed to measure emerging and re-emerging microbial diseases having new resistance mechanisms and to manage their rapid spread among the common public by means of novel alternative metabolites.

Conclusion: Antimicrobial Peptides (AMPs) are short, cationic peptides evolved in a wide range of living organisms and serve as the essential part of the host innate immunity. For humans, these effector molecules either can directly kill the foreign microbes or modulate the host immune systems so that the human body could develop some resistance against the microbial infections. In this review, we discuss their history, structural classifications, modes of action, and explain their biological roles as anti-infective agents. We also scrutinize their clinical potentiality, current limitations in various developmental stages and strategies to overcome for their successful clinical applications.

Keywords: Antimicrobial peptides, host defence, anti-infective, microbial infection, antimicrobial activity, drug development.

[1]
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 2006; 34(5)(Suppl. 1): S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[2]
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[3]
Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014; 2: 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[4]
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[5]
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36(6): 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[6]
Antimicrobial resistance: global report on surveillance. Geneva, Switzerland: WHO Press, World Health Organization 2014.
[7]
Antibiotic resistance threats in the United States. USA: Centers for Disease Control and Prevention 2013
[8]
Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 2013; 56(10): 1445-50.
[http://dx.doi.org/10.1093/cid/cit070] [PMID: 23403172]
[9]
Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 2015; 6: 1216.
[http://dx.doi.org/10.3389/fmicb.2015.01216] [PMID: 26583011]
[10]
Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34(5): 877-86.
[http://dx.doi.org/10.1007/s10096-015-2323-z] [PMID: 25630538]
[11]
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389-95.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[12]
Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 2017; 50(4): 405-10.
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[13]
Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006; 24(12): 1551-7.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[14]
Zhang L, Falla TJ. Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 2006; 7(6): 653-63.
[http://dx.doi.org/10.1517/14656566.7.6.653] [PMID: 16556083]
[15]
Fjell CD, Hiss JA, Hancock REW, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2011; 11(1): 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[16]
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Ringstad Lovisa, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 2016; 6: 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[17]
Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med 1939; 70(1): 1-10.
[http://dx.doi.org/10.1084/jem.70.1.1] [PMID: 19870884]
[18]
Dubos RJ. Studies on a bactericidal agent extracted from a soil bacillus: II. Protective effect of the bactericidal agent against experimental pneumococcus infections in mice. J Exp Med 1939; 70(1): 11-7.
[http://dx.doi.org/10.1084/jem.70.1.11] [PMID: 19870886]
[19]
Hotchkiss RD, Dubos RJ. Fractionation of the bactericidal agent from cultures of a soil Bacillus. J Biol Chem 1940; 132: 791-2.
[20]
Rammelkamp CH, Weinstein L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis 1942; 71: 166-73.
[http://dx.doi.org/10.1093/infdis/71.2.166]
[21]
Gause GF, Brazhnikova MG. Gramicidin S and its use in the treatment of infected wounds. Nature 1944; 154: 703.
[http://dx.doi.org/10.1038/154703a0]
[22]
Brock JH. Lactoferrin--50 years on. Biochem Cell Biol 2012; 90(3): 245-51.
[http://dx.doi.org/10.1139/o2012-018] [PMID: 22574842]
[23]
Dubos RJ, Hotchkiss RD. The production of bactericidal substances by aerobic sporulating bacilli. J Exp Med 1941; 73(5): 629-40.
[http://dx.doi.org/10.1084/jem.73.5.629] [PMID: 19871101]
[24]
Balls AK, Hale WS, Harris TH. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem 1942; 19: 951-61.
[25]
Fernandez de Caleya R, Gonzalez-Pascual B, García-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 1972; 23(5): 998-1000.
[http://dx.doi.org/10.1128/AEM.23.5.998-1000.1972] [PMID: 5031563]
[26]
Hirsch JG. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med 1956; 103(5): 589-611.
[http://dx.doi.org/10.1084/jem.103.5.589] [PMID: 13319580]
[27]
Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985; 76(4): 1427-35.
[http://dx.doi.org/10.1172/JCI112120] [PMID: 2997278]
[28]
Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 2015; 6: 115.
[http://dx.doi.org/10.3389/fimmu.2015.00115] [PMID: 25852686]
[29]
Zhang L-J, Gallo RL. Antimicrobial peptides. Curr Biol 2016; 26(1): R14-9.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[30]
Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol 2013; 31(5): 379-82.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[31]
Kang S-J, Park SJ, Mishig-Ochir T, Lee B-J. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12(12): 1477-86.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[32]
Kang H-K, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol 2017; 55(1): 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[33]
Hancock REW. Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 2000; 9(8): 1723-9.
[http://dx.doi.org/10.1517/13543784.9.8.1723] [PMID: 11060771]
[34]
Hancock REW, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000; 8(9): 402-10.
[http://dx.doi.org/10.1016/S0966-842X(00)01823-0] [PMID: 10989307]
[35]
Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 2004; 24(6): 536-47.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.09.005] [PMID: 15555874]
[36]
Easton DM, Nijnik A, Mayer ML, Hancock REW. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol 2009; 27(10): 582-90.
[http://dx.doi.org/10.1016/j.tibtech.2009.07.004] [PMID: 19683819]
[37]
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55(1): 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[38]
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2012; 32(2): 143-71.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[39]
The antimicrobial peptide database --> http://aps.unmc.edu/AP/main.php Available at
[40]
Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother 1999; 43(6): 1317-23.
[http://dx.doi.org/10.1128/AAC.43.6.1317] [PMID: 10348745]
[41]
Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1999; 1462(1-2): 11-28.
[http://dx.doi.org/10.1016/S0005-2736(99)00198-4] [PMID: 10590300]
[42]
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011; 29(9): 464-72.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[43]
Pfalzgraff A, Brandenburg K, Weindl G. Weindl Günther. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 2018; 9: 281.
[http://dx.doi.org/10.3389/fphar.2018.00281] [PMID: 29643807]
[44]
Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel) 2013; 6(12): 1543-75.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[45]
Agarwal S, Sharma G, Dang S, Gupta S, Gabrani R. Antimicrobial peptides as anti-infectives against Staphylococcus epidermidis. Med Princ Pract 2016; 25(4): 301-8.
[http://dx.doi.org/10.1159/000443479] [PMID: 26684017]
[46]
Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J 1993; 12(12): 4829-32.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06172.x] [PMID: 8223491]
[47]
Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 1994; 219(1-2): 145-54.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb19924.x] [PMID: 8306981]
[48]
Pardi A, Zhang XL, Selsted ME, Skalicky JJ, Yip PF. NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 1992; 31(46): 11357-64.
[http://dx.doi.org/10.1021/bi00161a013] [PMID: 1445873]
[49]
Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 1998; 37(12): 4288-98.
[http://dx.doi.org/10.1021/bi972323m] [PMID: 9521752]
[50]
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9): 710-20.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[51]
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7(5): 545-94.
[http://dx.doi.org/10.3390/ph7050545] [PMID: 24828484]
[52]
Rozek A, Friedrich CL, Hancock REW. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 2000; 39(51): 15765-74.
[http://dx.doi.org/10.1021/bi000714m] [PMID: 11123901]
[53]
Bowdish DME, Davidson DJ, Hancock REW. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 2005; 6(1): 35-51.
[http://dx.doi.org/10.2174/1389203053027494] [PMID: 15638767]
[54]
Lehrer RI, Barton A, Daher KA, Harwig SSL, Ganz T, Selsted ME. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 1989; 84(2): 553-61.
[http://dx.doi.org/10.1172/JCI114198] [PMID: 2668334]
[55]
Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 1998; 244(1): 253-7.
[http://dx.doi.org/10.1006/bbrc.1998.8159] [PMID: 9514864]
[56]
Friedrich CL, Rozek A, Patrzykat A, Hancock REW. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 2001; 276(26): 24015-22.
[http://dx.doi.org/10.1074/jbc.M009691200] [PMID: 11294848]
[57]
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002; 46(3): 605-14.
[http://dx.doi.org/10.1128/AAC.46.3.605-614.2002] [PMID: 11850238]
[58]
Powers JP, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003; 24(11): 1681-91.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[59]
Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19(3): 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[60]
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[61]
Yeung AT, Gellatly SL, Hancock REW. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 2011; 68(13): 2161-76.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[62]
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 2001; 81(3): 1475-85.
[http://dx.doi.org/10.1016/S0006-3495(01)75802-X] [PMID: 11509361]
[63]
Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M. Solid-state NMR investigations of peptide-lipid interaction and orientation of a β-sheet antimicrobial peptide, protegrin. Biochemistry 2002; 41(31): 9852-62.
[http://dx.doi.org/10.1021/bi0257991] [PMID: 12146951]
[64]
Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 2003; 84(5): 3052-60.
[http://dx.doi.org/10.1016/S0006-3495(03)70031-9] [PMID: 12719236]
[65]
Henzler Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 2003; 42(21): 6545-58.
[http://dx.doi.org/10.1021/bi0273563] [PMID: 12767238]
[66]
Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 1992; 31(49): 12416-23.
[http://dx.doi.org/10.1021/bi00164a017] [PMID: 1463728]
[67]
Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001; 22(10): 1629-41.
[http://dx.doi.org/10.1016/S0196-9781(01)00498-3] [PMID: 11587791]
[68]
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1999; 1462(1-2): 157-83.
[http://dx.doi.org/10.1016/S0005-2736(99)00205-9] [PMID: 10590307]
[69]
Zhang L, Rozek A, Hancock REW. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 2001; 276(38): 35714-22.
[http://dx.doi.org/10.1074/jbc.M104925200] [PMID: 11473117]
[70]
Ludtke S, He K, Huang H. Membrane thinning caused by magainin 2. Biochemistry 1995; 34(51): 16764-9.
[http://dx.doi.org/10.1021/bi00051a026] [PMID: 8527451]
[71]
Mecke A, Lee DK, Ramamoorthy A, Orr BG, Banaszak Holl MM. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 2005; 89(6): 4043-50.
[http://dx.doi.org/10.1529/biophysj.105.062596] [PMID: 16183881]
[72]
Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996; 35(35): 11361-8.
[http://dx.doi.org/10.1021/bi960016v] [PMID: 8784191]
[73]
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1998; 1376(3): 391-400.
[http://dx.doi.org/10.1016/S0304-4157(98)00014-8] [PMID: 9804997]
[74]
Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 1997; 272(18): 12008-13.
[http://dx.doi.org/10.1074/jbc.272.18.12008] [PMID: 9115266]
[75]
Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998; 160(1): 91-6.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x] [PMID: 9495018]
[76]
Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998; 42(1): 154-60.
[http://dx.doi.org/10.1128/AAC.42.1.154] [PMID: 9449277]
[77]
Brumfitt W, Salton MR, Hamilton-Miller JM. Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 2002; 50(5): 731-4.
[http://dx.doi.org/10.1093/jac/dkf190] [PMID: 12407132]
[78]
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 2000; 97(15): 8245-50.
[http://dx.doi.org/10.1073/pnas.150518097] [PMID: 10890923]
[79]
Salomón RA, Farías RN. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 1992; 174(22): 7428-35.
[http://dx.doi.org/10.1128/JB.174.22.7428-7435.1992] [PMID: 1429464]
[80]
Ishikawa M, Kubo T, Natori S. Purification and characterization of a diptericin homologue from Sarcophaga peregrina (flesh fly). Biochem J 1992; 287(Pt 2): 573-8.
[http://dx.doi.org/10.1042/bj2870573] [PMID: 1445217]
[81]
Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 2017; 61(4): e02340-16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[82]
Couto MA, Harwig SS, Lehrer RI. Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils. Infect Immun 1993; 61(7): 2991-4.
[http://dx.doi.org/10.1128/IAI.61.7.2991-2994.1993] [PMID: 8514405]
[83]
Ho YH, Sung TC, Chen CS. Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 2012; 11(4)014720
[http://dx.doi.org/10.1074/mcp.M111.014720] [PMID: 22138548]
[84]
Nijnik A, Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections Emerg Health Threats J 2009; 2e1.
[http://dx.doi.org/10.3402/ehtj.v2i0.7078] [PMID: 22460279]
[85]
Jenssen H, Hancock REW. Therapeutic potential of HDPs as immunomodulatory agents. Methods Mol Biol 2010; 618: 329-47.
[http://dx.doi.org/10.1007/978-1-60761-594-1_20] [PMID: 20094873]
[86]
Lee EY, Lee MW, Wong GCL. Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol 2019; 88: 173-84.
[http://dx.doi.org/10.1016/j.semcdb.2018.02.002] [PMID: 29432957]
[87]
Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 2005; 49(7): 2845-50.
[http://dx.doi.org/10.1128/AAC.49.7.2845-2850.2005] [PMID: 15980359]
[88]
Lee E, Kim JK, Shin S, et al. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships. Biochim Biophys Acta 2013; 1828(2): 271-83.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.028] [PMID: 23137439]
[89]
Téllez GA, Zapata JA, Toro LJ, et al. Identification, characterization, immunolocalization, and biological activity of lucilin peptide. Acta Trop 2018; 185: 318-26.
[http://dx.doi.org/10.1016/j.actatropica.2018.06.003] [PMID: 29890152]
[90]
Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30(3): 131-41.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[91]
Barra D, Simmaco M. Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol 1995; 13(6): 205-9.
[http://dx.doi.org/10.1016/S0167-7799(00)88947-7] [PMID: 7598843]
[92]
Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 1999; 43(4): 782-8.
[http://dx.doi.org/10.1128/AAC.43.4.782] [PMID: 10103181]
[93]
Thwaite JE, Humphrey S, Fox MA, et al. The cationic peptide magainin II is antimicrobial for Burkholderia cepacia-complex strains. J Med Microbiol 2009; 58(Pt 7): 923-9.
[http://dx.doi.org/10.1099/jmm.0.008128-0] [PMID: 19502364]
[94]
Conlon JM, Halverson T, Dulka J, Platz JE, Knoop FC. Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J Pept Res 1999; 54(6): 522-7.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00123.x] [PMID: 10604597]
[95]
Fennell JF, Shipman WH, Cole LJ. Antibacterial action of melittin, a polypeptide from bee venom. Proc Soc Exp Biol Med 1968; 127(3): 707-10.
[http://dx.doi.org/10.3181/00379727-127-32779] [PMID: 4870538]
[96]
Zheng Z, Tharmalingam N, Liu Q, et al. Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61(7): e00686-17.
[http://dx.doi.org/10.1128/AAC.00686-17] [PMID: 28483966]
[97]
Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 1999; 463(1-2): 58-62.
[http://dx.doi.org/10.1016/S0014-5793(99)01600-2] [PMID: 10601638]
[98]
Brahma B, Patra MC, Karri S, et al. Diversity, antimicrobial action and structure-activity relationship of buffalo cathelicidins. PLoS One 2015; 10(12)e0144741
[http://dx.doi.org/10.1371/journal.pone.0144741] [PMID: 26675301]
[99]
Varkey J, Nagaraj R. Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 2005; 49(11): 4561-6.
[http://dx.doi.org/10.1128/AAC.49.11.4561-4566.2005] [PMID: 16251296]
[100]
Luca V, Stringaro A, Colone M, Pini A, Mangoni ML. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 2013; 70(15): 2773-86.
[http://dx.doi.org/10.1007/s00018-013-1291-7] [PMID: 23503622]
[101]
Gwyer Findlay E, Currie SM, Davidson DJ. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 2013; 27(5): 479-93.
[http://dx.doi.org/10.1007/s40259-013-0039-0] [PMID: 23649937]
[102]
Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013; 4: 321.
[http://dx.doi.org/10.3389/fmicb.2013.00321] [PMID: 24198814]
[103]
Howell MD, Streib JE, Leung DYM. Antiviral activity of human beta-defensin 3 against vaccinia virus. J Allergy Clin Immunol 2007; 119(4): 1022-5.
[http://dx.doi.org/10.1016/j.jaci.2007.01.044] [PMID: 17353034]
[104]
Robinson WE Jr, McDougall B, Tran D, Selsted ME. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 1998; 63(1): 94-100.
[http://dx.doi.org/10.1002/jlb.63.1.94] [PMID: 9469478]
[105]
Andersen JH, Jenssen H, Sandvik K, Gutteberg TJ. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol 2004; 74(2): 262-71.
[http://dx.doi.org/10.1002/jmv.20171] [PMID: 15332275]
[106]
Skalickova S, Heger Z, Krejcova L, et al. Perspective of use of antiviral peptides against influenza virus. Viruses 2015; 7(10): 5428-42.
[http://dx.doi.org/10.3390/v7102883] [PMID: 26492266]
[107]
Zhao H, Zhou J, Zhang K, et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep 2016; 6: 22008.
[http://dx.doi.org/10.1038/srep22008] [PMID: 26911565]
[108]
De Lucca AJ, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 1999; 43(1): 1-11.
[http://dx.doi.org/10.1128/AAC.43.1.1] [PMID: 9869556]
[109]
Pushpanathan M, Rajendhran J, Jayashree S, Sundarakrishnan B, Jayachandran S, Gunasekaran P. Identification of a novel antifungal peptide with chitin-binding property from marine metagenome. Protein Pept Lett 2012; 19(12): 1289-96.
[http://dx.doi.org/10.2174/092986612803521620] [PMID: 22670672]
[110]
Faruck MO, Yusof F, Chowdhury S. An overview of antifungal peptides derived from insect. Peptides 2016; 80: 80-8.
[http://dx.doi.org/10.1016/j.peptides.2015.06.001] [PMID: 26093218]
[111]
Mamarabadi M, Tanhaeian A, Ramezany Y. Antifungal activity of recombinant thanatin in comparison with two plant extracts and a chemical mixture to control fungal plant pathogens. AMB Express 2018; 8(1): 180.
[http://dx.doi.org/10.1186/s13568-018-0710-4] [PMID: 30390158]
[112]
DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ. Fungicidal activity of cecropin A. Antimicrob Agents Chemother 1997; 41(2): 481-3.
[http://dx.doi.org/10.1128/AAC.41.2.481] [PMID: 9021214]
[113]
Tanida T, Okamoto T, Ueta E, Yamamoto T, Osaki T. Antimicrobial peptides enhance the candidacidal activity of antifungal drugs by promoting the efflux of ATP from Candida cells. J Antimicrob Chemother 2006; 57(1): 94-103.
[http://dx.doi.org/10.1093/jac/dki402] [PMID: 16291868]
[114]
Leboffe L, Giansanti F, Antonini G. Antifungal and antiparasitic activities of lactoferrin. Antiinfect Agents Med Chem 2009; 8: 114-27.
[http://dx.doi.org/10.2174/187152109787846105]
[115]
Levitz SM, Selsted ME, Ganz T, Lehrer RI, Diamond RD. In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis 1986; 154(3): 483-9.
[http://dx.doi.org/10.1093/infdis/154.3.483] [PMID: 3525696]
[116]
Belaid A, Hani K. Antiviral and antifungal activity of some dermaseptin S4 analogues. Afr J Biotechnol 2011; 10: 14962-7.
[http://dx.doi.org/10.5897/AJB11.1108]
[117]
Mor A. Multifunctional host defense peptides: antiparasitic activities. FEBS J 2009; 276(22): 6474-82.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07358.x] [PMID: 19817857]
[118]
Torrent M, Pulido D, Rivas L, Andreu D. Antimicrobial peptide action on parasites. Curr Drug Targets 2012; 13(9): 1138-47.
[http://dx.doi.org/10.2174/138945012802002393] [PMID: 22664071]
[119]
Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. Adv Biochem Eng Biotechnol 2013; 135: 157-92.
[http://dx.doi.org/10.1007/10_2013_191] [PMID: 23615879]
[120]
Lacerda AF, Pelegrini PB, de Oliveira DM, Vasconcelos ÉA, Grossi-de-Sá MF. Anti-parasitic peptides from arthropods and their application in drug therapy. Front Microbiol 2016; 7: 91.
[http://dx.doi.org/10.3389/fmicb.2016.00091] [PMID: 26903970]
[121]
de Moraes J, Nascimento C, Miura LM, Leite JR, Nakano E, Kawano T. Evaluation of the in vitro activity of dermaseptin 01, a cationic antimicrobial peptide, against Schistosoma mansoni. Chem Biodivers 2011; 8(3): 548-58.
[http://dx.doi.org/10.1002/cbdv.201000163] [PMID: 21404438]
[122]
Tanaka T, Maeda H, Matsuo T, et al. Parasiticidal activity of Haemaphysalis longicornis longicin P4 peptide against Toxoplasma gondii. Peptides 2012; 34(1): 242-50.
[http://dx.doi.org/10.1016/j.peptides.2011.07.027] [PMID: 21849158]
[123]
Dabirian S, Taslimi Y, Zahedifard F, et al. Human neutrophil peptide-1 (HNP-1): a new anti-leishmanial drug candidate. PLoS Negl Trop Dis 2013; 7(10)e2491
[http://dx.doi.org/10.1371/journal.pntd.0002491] [PMID: 24147170]
[124]
DRAMP. (data repository of antimicrobial peptides) --> http://dramp.cpu-bioinfor.org/ Available at
[125]
US national library of medicine for clinical trials --> https://clinicaltrials.gov/ Available at.
[126]
Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2003; 2(7): 587-93.
[http://dx.doi.org/10.1038/nrd1133] [PMID: 12815383]
[127]
Marr AK, Gooderham WJ, Hancock REW. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 2006; 6(5): 468-72.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
[128]
Vaara M. New approaches in peptide antibiotics. Curr Opin Pharmacol 2009; 9(5): 571-6.
[http://dx.doi.org/10.1016/j.coph.2009.08.002] [PMID: 19734091]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Published on: 07 September, 2020
Page: [542 - 552]
Pages: 11
DOI: 10.2174/1570163816666190620114338
Price: $65

Article Metrics

PDF: 27
HTML: 2