Navigating Research Toward the Re-emerging Nipah Virus- A New Piece to the Puzzle

Author(s): Pritika Ramharack, Nikita Devnarain, Letitia Shunmugam, Mahmoud E.S. Soliman*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 12 , 2019

Become EABM
Become Reviewer

Abstract:

Background: The recent Nipah virus (NiV) outbreak in India has caused a state of chaos, with potential to become the next international pandemic. There is still a great deal to learn about NiV for the development of a potent treatment against it. The NiV non-structural proteins play important roles in the lifecycle of the virus, with the RNA-dependent RNA-polymerase (RdRp) being a vital component in viral replication. In this study, we not only provide a comprehensive overview of all the literature concerning NiV, we also propose a model of the NiV RdRp and screen for potential inhibitors of the viral enzyme.

Methods: In this study, computational tools were utilized in the design of a NiV RdRp homology model. The active site of RdRp was then identified and potential inhibitors of the protein were discovered with the use of pharmacophore-based screening.

Results: Ramachandran plot analysis revealed a favourable model. Upon binding of nucleoside analog, 4’- Azidocytidine, active site residues Trp1714 and Ser1713 took part in stabilizing hydrogen bonds, while Thr1716, Ser1478, Ser1476 and Glu1465 contributed to hydrophobic interactions. Pharmacophore based screening yielded 18 hits, of which ZINC00085930 demonstrated the most optimal binding energy (-8.1 kcal/mol), validating its use for further analysis as an inhibitor of NiV.

Conclusion: In this study we provide a critical guide, elucidating on the in silico requirements of the drug design and discovery process against NiV. This material lays a foundation for future research into the design and development of drugs that inhibit NiV.

Keywords: Nipah vírus, paramyxoviridae, homology modelling, RNA-dependent RNA-polymerase, inhibitors, in silico.

[1]
Chua KB. Nipah virus: A recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432-5. [http://dx.doi.org/10.1126/science.288.5470.1432].
[2]
Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10(12): 2082-7. [http://dx.doi.org/10.3201/eid1012.040701]. [PMID: 15663842].
[3]
Wong KT, Shieh WJ, Zaki SR, Tan CT. Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin Immunopathol 2002; 24(2): 215-28. [http://dx.doi.org/10.1007/s00281-002-0106-y]. [PMID: 12503066].
[4]
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010. [http://dx.doi.org/10.1002/rmv.2010]. [PMID: 30251294].
[5]
Satterfield BA, Dawes BE, Milligan GN. Status of vaccine research and development of vaccines for Nipah virus. Vaccine 2016; 34(26): 2971-5. [http://dx.doi.org/10.1016/j.vaccine.2015.12.075]. [PMID: 26973068].
[6]
Centers for Disease Control and Prevention (CDC) Update: outbreak of Nipah virus--Malaysia and Singapore, 1999. MMWR Morb Mortal Wkly Rep 1999; 48(16): 335-7. [PMID: 10366143].
[7]
Clayton BA, Middleton D, Bergfeld J, et al. Transmission routes for nipah virus from Malaysia and Bangladesh. Emerg Infect Dis 2012; 18(12): 1983-93. [http://dx.doi.org/10.3201/eid1812.120875]. [PMID: 23171621].
[8]
Homaira N, Rahman M, Hossain MJ, et al. Evidence of person-to-person transmission of nipah virus through casual contact. Lancet 2018; 12(1): 99. [http://dx.doi.org/10.1016/j.ijid.2008.05.248].
[9]
Chew MHL, Arguin PM, Shay DK, et al. Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000; 181(5): 1760-3. [http://dx.doi.org/10.1086/315443]. [PMID: 10823780].
[10]
Hsu VP. Nipah and hendra viruses. Perspect Med Virol 2006; 16: 179-99. [http://dx.doi.org/10.1016/S0168-7069(06)16009-7].
[11]
Li Y, Wang J, Hickey AC, et al. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 2008; 14(12): 1974-6. [http://dx.doi.org/10.3201/eid1412.080359]. [PMID: 19046545].
[12]
Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol 2013; 24(3): 398-408. [http://dx.doi.org/10.1007/s13337-013-0171-y]. [PMID: 24426305].
[13]
Verma MK, Verma P, Singh S, Gaur P, Siddiqui AH, Pandey S. Nipah virus- infectious agent. An Overview 2018; 4(3): 1844-50.
[14]
Aguilar HC, Iorio RM. Henipavirus membrane fusion and viral entry. Curr Top Microbiol Immunol 2012; 359(2): 79-94. [http://dx.doi.org/10.1007/82_2012_200]. [PMID: 22427111].
[15]
Deka MA, Morshed N. Mapping disease transmission risk of nipah virus in south and southeast asia. Trop Med Infect Dis 2018; 3(2): 57. [http://dx.doi.org/10.3390/tropicalmed3020057]. [PMID: 30274453].
[16]
Directorate of Health Services. Kerala Nipah Virus infection- Guidelines 2018; 1-15.
[17]
Wong KT, Grosjean I, Brisson C, et al. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003; 163(5): 2127-37. [http://dx.doi.org/10.1016/S0002-9440(10)63569-9]. [PMID: 14578210].
[18]
Middleton DJ, Westbury HA, Morrissy CJ, et al. Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002; 126(2-3): 124-36. [http://dx.doi.org/10.1053/jcpa.2001.0532]. [PMID: 11945001].
[19]
Wong KT, Shieh W-J, Kumar S, Zaki SR. Nipah virus : An update on prevention and control strategies with special reference to the latest outbreak in india. Am J Pathol 2018; 161(6): 2153-67. [http://dx.doi.org/10.1016/S0002-9440(10)64493-8]. [PMID: 12466131].
[20]
Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7(4): 308-11. [http://dx.doi.org/10.3855/jidc.3648]. [PMID: 23592639].
[21]
Ganguly S, Kumar SV, Pagrut N, Faran NK. Nipah virus: An update on prevention and control strategies with special reference to the latest outbreak in India. Int J Vet Sci Anim Husbandry 2018; 3(3): 20-1.
[22]
World Health Organization (WHO) Nipah Virus Infection 2007; 1-7.
[23]
Rockx B, Winegar R, Freiberg AN. Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res 2012; 95(2): 135-49. [http://dx.doi.org/10.1016/j.antiviral.2012.05.008]. [PMID: 22643730].
[24]
Yoneda M, Guillaume V, Ikeda F, et al. Establishment of a Nipah virus rescue system. Proc Natl Acad Sci USA 2006; 103(44): 16508-13. [http://dx.doi.org/10.1073/pnas.0606972103]. [PMID: 17053073].
[25]
Sun Y, Guo Y, Lou Z. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell 2012; 3(12): 893-902. [http://dx.doi.org/10.1007/s13238-012-2087-5]. [PMID: 23136065].
[26]
Kranzusch PJ, Whelan SPJ. Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol 2012; 9(7): 941-8. [http://dx.doi.org/10.4161/rna.20345]. [PMID: 22767259].
[27]
Huang M, Sato H, Hagiwara K, et al. Determination of a phosphorylation site in Nipah virus nucleoprotein and its involvement in virus transcription. J Gen Virol 2011; 92(Pt 9): 2133-41. [http://dx.doi.org/10.1099/vir.0.032342-0]. [PMID: 21613447].
[28]
Harcourt BH, Tamin A, Halpin K, et al. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001; 287(1): 192-201. [http://dx.doi.org/10.1006/viro.2001.1026]. [PMID: 11504554].
[29]
Green TJ, Luo M. Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci USA 2009; 106(28): 11713-8. [http://dx.doi.org/10.1073/pnas.0903228106]. [PMID: 19571006].
[30]
Hayman DTS, Johnson N. Nipah virus: A virus with multiple pathways of emergence the role of animals in emerging viral diseases. Elsevier 2014; pp. 293-315. [http://dx.doi.org/10.1016/B978-0-12-405191-1.00011-9]
[31]
Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008; 89(Pt 5): 1300-8. [http://dx.doi.org/10.1099/vir.0.83582-0]. [PMID: 18420809].
[32]
Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432-5. [http://dx.doi.org/10.1126/science.288.5470.1432]. [PMID: 10827955].
[33]
Yoneda M, Guillaume V, Sato H, et al. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS One 2010; 5(9): e12709. [http://dx.doi.org/10.1371/journal.pone.0012709]. [PMID: 20856799].
[34]
Sazzad HMS, Hossain MJ, Gurley ES, et al. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, bangladesh. Emerg Infect Des J 2013; 19(2): 1-14. [http://dx.doi.org/10.3201/eid1902.120971].
[35]
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590(15): 2494-511. [http://dx.doi.org/10.1002/1873-3468.12272]. [PMID: 27350027].
[36]
Battisti AJ, Meng G, Winkler DC, et al. Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci USA 2012; 109(35): 13996-4000. [http://dx.doi.org/10.1073/pnas.1210275109]. [PMID: 22891297].
[37]
Diederich S, Sauerhering L, Weis M, et al. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 2012; 86(7): 3736-45. [http://dx.doi.org/10.1128/JVI.06628-11]. [PMID: 22278224].
[38]
Weis M, Maisner A. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol 2015; 94(7-9): 316-22. [http://dx.doi.org/10.1016/j.ejcb.2015.05.005]. [PMID: 26059400].
[39]
Pager CT, Craft WW Jr, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006; 346(2): 251-7. [http://dx.doi.org/10.1016/j.virol.2006.01.007]. [PMID: 16460775].
[40]
Negrete OA, Levroney EL, Aguilar HC, et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005; 436(7049): 401-5. [http://dx.doi.org/10.1038/nature03838]. [PMID: 16007075].
[41]
Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol 2010; 84(12): 6208-17. [http://dx.doi.org/10.1128/JVI.00317-10]. [PMID: 20375167].
[42]
Talekar A, Pessi A, Porotto M. Infection of primary neurons mediated by nipah virus envelope proteins: role of host target cells in antiviral action. J Virol 2011; 85(16): 8422-6. [http://dx.doi.org/10.1128/JVI.00452-11]. [PMID: 21653662].
[43]
Steffen DL, Xu K, Nikolov DB, Broder CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012; 4(2): 280-308. [http://dx.doi.org/10.3390/v4020280]. [PMID: 22470837].
[44]
Deffrasnes C, Marsh GA, Foo CH, et al. Genome-wide siRNA screening at biosafety level 4 reveals a crucial role for fibrillarin in henipavirus infection. PLoS Pathog 2016; 12(3): e1005478. [http://dx.doi.org/10.1371/journal.ppat.1005478]. [PMID: 27010548].
[45]
Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J Cell Sci 2010; 123(Pt 8): 1235-46. [http://dx.doi.org/10.1242/jcs.061903]. [PMID: 20233847].
[46]
Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4(1): 43-55. [http://dx.doi.org/10.1586/14787210.4.1.43]. [PMID: 16441208].
[47]
Martinez-Gil L, Vera-Velasco NM, Mingarro I. Exploring the human-nipah virus protein-protein interactome. J Virol 2017; 91(23): 01461-17. [http://dx.doi.org/10.1128/JVI.01461-17]. [PMID: 28904190].
[48]
Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): 1875-7. [http://dx.doi.org/10.1128/JCM.01875-17]. [PMID: 29643201].
[49]
Satterfield BA. The future of preventing and treating Nipah virus infection. Future Sci OA 2017; 3(4): 1-4. [http://dx.doi.org/10.4155/fsoa-2017-0056].
[50]
Mire CE, Versteeg KM, Cross RW, et al. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 2013; 10: 353. [http://dx.doi.org/10.1186/1743-422X-10-353]. [PMID: 24330654].
[51]
Mire CE, Geisbert JB, Agans KN, et al. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge. J Virol 2014; 88(9): 4624-31. [http://dx.doi.org/10.1128/JVI.00005-14]. [PMID: 24522928].
[52]
Kurup D, Wirblich C, Feldmann H, Marzi A, Schnell MJ. Rhabdovirus-based vaccine platforms against henipaviruses. J Virol 2015; 89(1): 144-54. [http://dx.doi.org/10.1128/JVI.02308-14]. [PMID: 25320306].
[53]
Middleton D, Pallister J, Klein R, et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 2014; 20(3): 372-9. [http://dx.doi.org/10.3201/eid2003.131159]. [PMID: 24572697].
[54]
Hoffmann M, Nehlmeier I, Brinkmann C, et al. Tetherin inhibits nipah virus but not ebola virus replication in fruit bat cells. J Virol 2019; 93(3): 1-12. [PMID: 30429347].
[55]
Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49(6): 810-3. [http://dx.doi.org/10.1002/ana.1062]. [PMID: 11409437].
[56]
Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010; 91(Pt 3): 765-72. [http://dx.doi.org/10.1099/vir.0.017269-0]. [PMID: 19889926].
[57]
Porotto M, Moscona A, Horvat B, Mathieu C, Keys AL. Inhibitors of fusion between viral and cell membranes as well as compositions and methods of using them 2019. WO2015171924
[58]
Niedermeier S, Singethan K, Rohrer SG, et al. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion. J Med Chem 2009; 52(14): 4257-65. [http://dx.doi.org/10.1021/jm900411s]. [PMID: 19499921].
[59]
Tigabu B, Rasmussen L, White EL, et al. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev Technol 2014; 12(3): 155-61. [http://dx.doi.org/10.1089/adt.2013.567]. [PMID: 24735442].
[60]
Dawes BE, Kalveram B, Ikegami T, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8(1): 7604. [http://dx.doi.org/10.1038/s41598-018-25780-3]. [PMID: 29765101].
[61]
Hotard AL, He B, Nichol ST, Spiropoulou CF, Lo MK. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Res 2017; 144(2): 147-52. [http://dx.doi.org/10.1016/j.antiviral.2017.06.011]. [PMID: 28629988].
[62]
Lo MK, Jordan PC, Stevens S, et al. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs. Antiviral Res 2018; 153: 101-13. [http://dx.doi.org/10.1016/j.antiviral.2018.03.009]. [PMID: 29601894].
[63]
Ramharack P, Soliman MES. Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks. Drug Discov Today 2018; 23(9): 1658-65. [http://dx.doi.org/10.1016/j.drudis.2018.05.041]. [PMID: 29864527].
[64]
Ramharack P, Soliman MES. Zika virus drug targets: a missing link in drug design and discovery - a route map to fill the gap. RSC Advances 2016; 6(73): 68719-31. [http://dx.doi.org/10.1039/C6RA12142J].
[65]
Bethesda (MD): National Library of Medicine (US) National Center for Biotechnology Information (NCBI) [Internet] Accessed [11/03/2018] 1988.
[66]
Chan YP, Chua KB, Koh CL, Lim ME, Lam SK. Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 2001; 82(Pt 9): 2151-5. [http://dx.doi.org/10.1099/0022-1317-82-9-2151]. [PMID: 11514724].
[67]
Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014; 42(Web Server issue). : W252-8. [http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[68]
Munsamy G, Soliman MES. Homology modeling in drug discovery-an update on the last decade. Lett Drug Des Discov 2017; 14(9): 1099-111. [http://dx.doi.org/10.2174/1570180814666170110122027].
[69]
Ramharack P, Soliman MES. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J Biomol Struct Dyn 2018; 36(5): 1118-33. [http://dx.doi.org/10.1080/07391102.2017.1313175]. [PMID: 28351337].
[70]
Maharaj Y, Soliman MES. Identification of novel gyrase B inhibitors as potential anti-TB drugs: homology modelling, hybrid virtual screening and molecular dynamics simulations. Chem Biol Drug Des 2013; 82(2): 205-15. [http://dx.doi.org/10.1111/cbdd.12152]. [PMID: 23614896].
[71]
Velkov T, Carbone V, Akter J, et al. The RNA-dependent-RNA polymerase, an emerging antiviral drug target for the Hendra virus. Curr Drug Targets 2014; 15(1): 103-13. [http://dx.doi.org/10.2174/1389450114888131204163210]. [PMID: 24102407].
[72]
Hernandez M, Ghersi D, Sanchez R. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 2009; 37(Web Server issue). : W413-6. [http://dx.doi.org/10.1093/nar/gkp281] [PMID: 19398430]
[73]
Ravichandran L, Venkatesan A, Febin Prabhu Dass J. Epitope-based immunoinformatics approach on RNA-dependent RNA polymerase (RdRp) protein complex of Nipah virus (NiV). J Cell Biochem 2018; 4: 1-14. [PMID: 30417438].
[74]
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995; 8(2): 127-34. [http://dx.doi.org/10.1093/protein/8.2.127]. [PMID: 7630882].
[75]
Koes DRC, Camacho CJ. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 2012; 40(Web Server issue). : W409-14. [http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 12
Year: 2019
Page: [1392 - 1401]
Pages: 10
DOI: 10.2174/1381612825666190620104203
Price: $65

Article Metrics

PDF: 23
HTML: 3