Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance

Author(s): Prasad Minakshi*, Mayukh Ghosh, Basanti Brar, Rajesh Kumar, Upendra P. Lambe, Koushlesh Ranjan, Jinu Manoj, Gaya Prasad

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 13 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option.

Objective: The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future.

Results: Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs.

Conclusion: Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.

Keywords: Tuberculosis, nanoparticles, nano-carriers, nanoantibiotics, nano-vaccine, microbial resistance.

[1]
Reisner BS, Woods GL. Times to detection of bacteria and yeasts in BACTEC 9240 blood culture bottles. J Clin Microbiol 1999; 37(6): 2024-6.
[PMID: 10325369]
[2]
WHO. Global Tuberculosis Report 2016 ISBN 978 92 4 156539 4.http://apps.who.int/medicinedocs/en/d/Js23098en/
[3]
Cosma CL, Sherman DR, Ramakrishnan L. The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 2003; 57: 641-76.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.091033] [PMID: 14527294]
[4]
Biet F, Boschiroli ML, Thorel MF, Guilloteau LA. Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Vet Res 2005; 36(3): 411-36.
[http://dx.doi.org/10.1051/vetres:2005001] [PMID: 15845232]
[5]
Arastéh KN, Cordes C, Ewers M, et al. HIV-related nontuberculous mycobacterial infection: Incidence, survival analysis and associated risk factors. Eur J Med Res 2000; 5(10): 424-30.
[PMID: 11076783]
[6]
MMWR Morb Mortal Wkly Rep. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs-- worldwide. 2000-2004. CDC 2006; 5511: 301-5.
[7]
WHO. Multidrug-/rifampicin resistant TB (MDR/RR-TB): Update . 2017.https://www.who.int/tb/areas-of-work/drug-resistant-tb/MDR_TB_2017.pdf
[8]
WHO. Global Task Force on XDR-TB. Meeting & World Health 26 Organization . Report of the meeting of the WHO Global Task 27 Force on XDR-TB: Geneva, Switzerland, In. 2006.
[9]
Kim HR, Hwang SS, Kim HJ, et al. Impact of extensive drug resistance on treatment outcomes in non-HIV-infected patients with multidrug-resistant tuberculosis. Clin Infect Dis 2007; 45(10): 1290-5.
[http://dx.doi.org/10.1086/522537] [PMID: 17968823]
[10]
Migliori GB, Lange C, Centis R, et al. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur Respir J 2008; 31(6): 1155-9.
[http://dx.doi.org/10.1183/09031936.00028708] [PMID: 18515555]
[11]
Shah NS, Pratt R, Armstrong L, Robison V, Castro KG, Cegielski JP. Extensively drug-resistant tuberculosis in the United States, 1993-2007. JAMA 2008; 300(18): 2153-60.
[http://dx.doi.org/10.1001/jama.300.18.2153] [PMID: 19001626]
[12]
Marks SM, Flood J, Seaworth B, et al. TB epidemiologic studies consortium. Treatment practices, outcomes, and costs of multidrug-resistant and extensively drug-resistant tuberculosis, United States, 2005-2007. Emerg Infect Dis 2014; 20(5): 812-21.
[http://dx.doi.org/10.3201/eid2005.131037] [PMID: 24751166]
[13]
WHO. World Health Organization Global tuberculosis report 2014.
[14]
He XC, Tao NN, Liu Y, Zhang XX, Li HC. Epidemiological trends and outcomes of extensively drug-resistant tuberculosis in Shandong, China. BMC Infect Dis 2017; 17(1): 555.
[http://dx.doi.org/10.1186/s12879-017-2652-x] [PMID: 28793873]
[15]
Marianelli C, Armas F, Boniotti MB, Mazzone P, Pacciarini ML, Di Marco Lo Presti V. Multiple drug-susceptibility screening in Mycobacterium bovis: New nucleotide polymorphisms in the embB gene among ethambutol susceptible strains. Int J Infect Dis 2015; 33: 39-44.
[http://dx.doi.org/10.1016/j.ijid.2014.12.043] [PMID: 25554388]
[16]
Moss AR, Alland D, Telzak E, et al. A city-wide outbreak of a multiple-drug-resistant strain of Mycobacterium tuberculosis in New York. Int J Tuberc Lung Dis 1997; 1(2): 115-21.
[PMID: 9441074]
[17]
Barry PM, Gardner TJ, Funk E, et al. Multistate outbreak of MDR TB identified by genotype cluster investigation. Emerg Infect Dis 2012; 18(1): 113-6.
[http://dx.doi.org/10.3201/eid1801.110671] [PMID: 22260877]
[18]
Eldholm V, Monteserin J, Rieux A, et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 2015; 6: 7119.
[http://dx.doi.org/10.1038/ncomms8119] [PMID: 25960343]
[19]
Walker TM, Merker M, Knoblauch AM, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: A molecular epidemiological study. Lancet Infect Dis 2018; 18(4): 431-40.
[http://dx.doi.org/10.1016/S1473-3099(18)30004-5] [PMID: 29326013]
[20]
Dahle UR, Sandven P, Heldal E, Mannsaaker T, Caugant DA. Deciphering an outbreak of drug-resistant Mycobacterium tuberculosis. J Clin Microbiol 2003; 41(1): 67-72.
[http://dx.doi.org/10.1128/JCM.41.1.67-72.2003] [PMID: 12517827]
[21]
Tang TQ, Fu SC, Chen YH, Chien ST, Lee JJ, Lin CB. Outbreak of multidrug-resistant tuberculosis in an aboriginal family in eastern Taiwan. Ci Ji Yi Xue Za Zhi 2016; 28(1): 29-32.
[http://dx.doi.org/10.1016/j.tcmj.2014.09.001] [PMID: 28757715]
[22]
Knight GM, Zimic M, Funk S, Gilman RH, Friedland JS, Grandjean L. The relative fitness of drug-resistant Mycobacterium tuberculosis: A modelling study of household transmission in Peru. J R Soc Interface 2018; 15(143) Pii: 20180025
[http://dx.doi.org/10.1098/rsif.2018.0025] [PMID: 29950511]
[23]
Shah NS, Westenhouse J, Lowenthal P, et al. The California Multidrug-Resistant Tuberculosis Consult Service: A partnership of state and local programs. Public Health Action 2018; 8(1): 7-13.
[http://dx.doi.org/10.5588/pha.17.0091] [PMID: 29581937]
[24]
Kawatsu L, Uchimura K, Izumi K, Ohkado A, Yoshiyama T. Treatment outcome of multidrug-resistant tuberculosis in Japan - the first cross-sectional study of Japan tuberculosis surveillance data. BMC Infect Dis 2018; 18(1): 445.
[http://dx.doi.org/10.1186/s12879-018-3353-9] [PMID: 30170549]
[25]
Mahla RS. Prevalence of drug-resistant tuberculosis in South Africa. Lancet Infect Dis 2018; 18(8): 836.
[http://dx.doi.org/10.1016/S1473-3099(18)30401-8] [PMID: 30064674]
[27]
Mirsaeidi M. After 40 years, new medicine for combating TB. Int J Mycobacteriol 2013; 2(1): 1-2.
[http://dx.doi.org/10.1016/j.ijmyco.2013.01.004] [PMID: 25045621]
[28]
Xu Y, Liu F, Chen S, et al. In vivo evolution of drug-resistant Mycobacterium tuberculosis in patients during long-term treatment. BMC Genomics 2018; 19(1): 640.
[http://dx.doi.org/10.1186/s12864-018-5010-5] [PMID: 30157763]
[29]
Tekin E, White C, Kang TM, et al. Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst Biol Appl 2018; 4: 31.
[http://dx.doi.org/10.1038/s41540-018-0069-9] [PMID: 30181902]
[30]
Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[31]
Kumar N, Salar RK, Kumar R, et al. Green Synthesis of Silver Nanoparticles and its Applications-. RE:view 2017; 19: 1-22.
[32]
Kumar N, Kumar SR, Prasad M, et al. Synthesis, characterization and anticancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. EJBAS 2018; 5: 87-99.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.002]
[34]
Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomed Pharmacother 2017; 95: 1520-34.
[http://dx.doi.org/10.1016/j.biopha.2017.09.036] [PMID: 28946393]
[35]
Jarlier V, Nikaido H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 1994; 123(1-2): 11-8.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb07194.x] [PMID: 7988876]
[36]
Neyrolles O, Guilhot C. Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis 2011; 91(3): 187-95.
[http://dx.doi.org/10.1016/j.tube.2011.01.002] [PMID: 21330212]
[37]
Delahay RJ, De Leeuw AN, Barlow AM, Clifton-hadley RS, Cheeseman CL. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet J 2002; 164(2): 90-105.
[http://dx.doi.org/10.1053/tvjl.2001.0667] [PMID: 12359464]
[38]
Phillips CJC, Foster CRW, Morris PA, Teverson R. The transmission of Mycobacterium bovis infection to cattle. Res Vet Sci 2003; 74(1): 1-15.
[http://dx.doi.org/10.1016/S0034-5288(02)00145-5] [PMID: 12507561]
[39]
O’Reilly LM, Daborn CJ. The epidemiology of Mycobacterium bovis infections in animals and man: A review. Tuber Lung Dis 1995; 76(Suppl. 1): 1-46.
[http://dx.doi.org/10.1016/0962-8479(95)90591-X] [PMID: 7579326]
[40]
Michel AL, Müller B, van Helden PD. Mycobacterium bovis at the animal-human interface: A problem, or not? Vet Microbiol 2010; 140(3-4): 371-81.
[http://dx.doi.org/10.1016/j.vetmic.2009.08.029] [PMID: 19773134]
[41]
Britton WJ, Lockwood DN. Leprosy. Lancet 2004; 363(9416): 1209-19.
[http://dx.doi.org/10.1016/S0140-6736(04)15952-7] [PMID: 15081655]
[42]
Lockwood DN, Suneetha S. Leprosy: Too complex a disease for a simple elimination paradigm. Bull World Health Organ 2005; 83(3): 230-5.
[PMID: 15798849]
[43]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[44]
Guerrero MI, Colorado CL, Torres JF, León CI. Is drug-resistant Mycobacterium leprae a real cause for concern?: First approach to molecular monitoring of multibacillary Colombian patients with and without previous leprosy treatment. Biomedica 2014; 34(Suppl. 1): 137-47.
[http://dx.doi.org/10.7705/biomedica.v34i0.1686] [PMID: 24968045]
[45]
da Silva Rocha A. Cunha Md, Diniz LM, et al Drug and multidrug resistance among Mycobacterium leprae isolates from Brazilian relapsed leprosy patients. J Clin Microbiol 2012; 50(6): 1912-7.
[http://dx.doi.org/10.1128/JCM.06561-11] [PMID: 22495562]
[46]
Maeda S, Matsuoka M, Nakata N, et al. Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother 2001; 45(12): 3635-9.
[http://dx.doi.org/10.1128/AAC.45.12.3635-3639.2001] [PMID: 11709358]
[47]
Williams DL, Gillis TP. Drug-resistant leprosy: Monitoring and current status. Lepr Rev 2012; 83(3): 269-81.
[PMID: 23356028]
[48]
Kai M, Nguyen Phuc NH, Nguyen HA, et al. Analysis of drug-resistant strains of Mycobacterium leprae in an endemic area of Vietnam. Clin Infect Dis 2011; 52(5): E127-32.
[http://dx.doi.org/10.1093/cid/ciq217] [PMID: 21292655]
[49]
Williams DL, Lewis C, Sandoval FG, et al. Drug resistance in patients with leprosy in the United States. Clin Infect Dis 2014; 58(1): 72-3.
[http://dx.doi.org/10.1093/cid/cit628] [PMID: 24065328]
[50]
Silva MT, Portaels F, Pedrosa J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect Dis 2009; 9(11): 699-710.
[http://dx.doi.org/10.1016/S1473-3099(09)70234-8] [PMID: 19850228]
[51]
WHO. Treatment of Mycobacterium Ulcerans disease (buruli ulcer). 2012; ISBN 978 92 4 150340 2.
[52]
Majoral JP, Zablocka M, Caminade AM, et al. Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic-metallic macromolecules. Coord Chem Rev 2018; 258: 80-91.
[http://dx.doi.org/10.1016/j.ccr.2017.12.004]
[53]
Karakousis PC, Moore RD, Chaisson RE. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect Dis 2004; 4(9): 557-65.
[http://dx.doi.org/10.1016/S1473-3099(04)01130-2] [PMID: 15336223]
[54]
Hadad DJ, Palhares MC, Placco AL, et al. Mycobacterium avium complex (MAC) isolated from AIDS patients and the criteria required for its implication in disease. Rev Inst Med Trop São Paulo 1995; 37(5): 375-83.
[http://dx.doi.org/10.1590/S0036-46651995000500001] [PMID: 8729746]
[55]
Reed C, von Reyn CF, Chamblee S, et al. Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol 2006; 164(1): 32-40.
[http://dx.doi.org/10.1093/aje/kwj159] [PMID: 16675537]
[56]
Hayashi M, Takayanagi N, Kanauchi T, Miyahara Y, Yanagisawa T, Sugita Y. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2012; 185(5): 575-83.
[http://dx.doi.org/10.1164/rccm.201107-1203OC] [PMID: 22199005]
[57]
Dhar K, Shenoy VP, Vishwanath S, et al. Disseminated Mycobacterium avium intracellulare complex (MAC) disease in a retropositive patient caused by noncompliance of HAART. Ann Trop Med Public Health 2016; 9: 194-6.
[http://dx.doi.org/10.4103/1755-6783.179100]
[58]
Collins LF, Clement ME, Stout JE. Incidence, Long-Term Outcomes, and Healthcare Utilization of Patients With Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome and Disseminated Mycobacterium avium Complex From 1992-2015. Open Forum Infect Dis 2017; 4(3)Ofx120
[http://dx.doi.org/10.1093/ofid/ofx120] [PMID: 28748197]
[59]
Griffith DE, Aksamit T, Brown-Elliott BA, et al. Mycobacterial Diseases Subcommittee. American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175(4): 367-416.
[http://dx.doi.org/10.1164/rccm.200604-571ST] [PMID: 17277290]
[60]
Griffith DE. Treatment of Mycobacterium avium Complex (MAC). Semin Respir Crit Care Med 2018; 39(3): 351-61.
[http://dx.doi.org/10.1055/s-0038-1660472] [PMID: 30071550]
[61]
Doucet-Populaire F, Truffot-Pernot C, Grosset J, Jarlier V. Acquired resistance in Mycobacterium avium complex strains isolated from AIDS patients and beige mice during treatment with clarithromycin. J Antimicrob Chemother 1995; 36(1): 129-36.
[http://dx.doi.org/10.1093/jac/36.1.129] [PMID: 8537260]
[62]
Griffith DE. Macrolide-resistant Mycobacterium avium complex: “I feel like I’ve been here before. Ann Am Thorac Soc 2016; 13(11): 1881-2.
[http://dx.doi.org/10.1513/AnnalsATS.201609-666ED] [PMID: 27831800]
[63]
Morimoto K, Namkoong H, Hasegawa N, et al. Macrolide-resistant Mycobacterium avium complex lung disease: Analysis of 102 consecutive cases. Ann Am Thorac Soc 2016; 13(11): 1904-11.
[http://dx.doi.org/10.1513/AnnalsATS.201604-246OC] [PMID: 27513168]
[64]
Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest 2004; 126(2): 566-81.
[http://dx.doi.org/10.1378/chest.126.2.566] [PMID: 15302746]
[65]
Lam PK, Griffith DE, Aksamit TR, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 173(11): 1283-9.
[http://dx.doi.org/10.1164/rccm.200509-1531OC] [PMID: 16514112]
[66]
Kobashi Y, Matsushima T, Oka M. A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir Med 2007; 101(1): 130-8.
[http://dx.doi.org/10.1016/j.rmed.2006.04.002] [PMID: 16750618]
[67]
Koh WJ, Jeong BH, Jeon K, et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M avium complex lung disease. Chest 2012; 142(6): 1482-8.
[http://dx.doi.org/10.1378/chest.12-0494] [PMID: 22628488]
[68]
Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25(3): 545-82.
[http://dx.doi.org/10.1128/CMR.05030-11] [PMID: 22763637]
[69]
Yeo PL, Lim CL, Chye SM, et al. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 2017; 11(4): 301-14.
[http://dx.doi.org/10.1515/abm-2018-0002]
[70]
Santos-Magalhães NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62(4-5): 560-75.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[71]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[72]
Washington (DC). Ending Neglect: The Elimination of Tuberculosis in the United States. National Academies Press (US). 2000.
[73]
Thacharodi D, Rao KP. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 1995; 16(2): 145-8.
[http://dx.doi.org/10.1016/0142-9612(95)98278-M] [PMID: 7734649]
[74]
Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005; 26(35): 7260-75.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.044] [PMID: 16023200]
[75]
Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224: 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008] [PMID: 26772877]
[76]
Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis 2011; 15(8): E525-32.
[http://dx.doi.org/10.1016/j.ijid.2011.03.021] [PMID: 21605997]
[77]
Gaspar MM, Cruz A, Fraga AG, Castro AG, Cruz ME, Pedrosa J. Developments on drug delivery systems for the treatment of mycobacterial infections. Curr Top Med Chem 2008; 8(7): 579-91.
[http://dx.doi.org/10.2174/156802608783955629] [PMID: 18473884]
[78]
Development of Drug Loaded Nanoparticles for Treatment of Mycobacterium avium Infection. PhD thesis, Eva Marie Restis. September 20th. 2013.
[79]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[80]
Sessa G, Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res 1968; 9(3): 310-8.
[PMID: 5646182]
[81]
Gregoriadis G, Ryman BE. Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem 1972; 24(3): 485-91.
[http://dx.doi.org/10.1111/j.1432-1033.1972.tb19710.x] [PMID: 4500958]
[82]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[83]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[84]
Bermúdez JM, Cid AG, Romero AI, et al. New Trends in the Antimicrobial Agents Delivery Using Nanoparticles Elsevier. Grumezescu, AM 2017; pp. 1-28.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00001-X]
[85]
Deol P, Khuller GK, Joshi K. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob Agents Chemother 1997; 41(6): 1211-4.
[http://dx.doi.org/10.1128/AAC.41.6.1211] [PMID: 9174172]
[86]
Pandey R, Sharma S, Khuller GK. Liposome-based antitubercular drug therapy in a guinea pig model of tuberculosis. Int J Antimicrob Agents 2004; 23(4): 414-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.01.002] [PMID: 15081096]
[87]
Orozco LC, Quintana FO, Beltrán RM, de Moreno I, Wasserman M, Rodriguez G. The use of rifampicin and isoniazid entrapped in liposomes for the treatment of Murine tuberculosis. Tubercle 1986; 67(2): 91-7.
[http://dx.doi.org/10.1016/0041-3879(86)90002-4] [PMID: 3775869]
[88]
Ladigina GA, Vladimirsky MA. The comparative pharmacokinetics of 3H-dihydrostreptomycin in solution and liposomal form in normal and Mycobacterium tuberculosis infected mice. Biomed Pharmacother 1986; 40(10): 416-20.
[PMID: 2437978]
[89]
Vladimirskiĭ MA, Ladygina GA, Tentsova AI. Effectiveness of liposome-incorporated streptomycin in experimental tuberculosis in mice. Antibiotiki 1983; 28(1): 23-6.
[PMID: 6830199]
[90]
Ehlers S, Bucke W, Leitzke S, et al. Liposomal amikacin for treatment of M. avium infections in clinically relevant experimental settings. Zentralbl Bakteriol 1996; 284(2-3): 218-31.
[http://dx.doi.org/10.1016/S0934-8840(96)80097-1] [PMID: 8837382]
[91]
Klemens SP, Cynamon MH, Swenson CE, Ginsberg RS. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 1990; 34(6): 967-70.
[http://dx.doi.org/10.1128/AAC.34.6.967] [PMID: 2393294]
[92]
Tomioka H, Saito H, Sato K, Yoneyama T. Therapeutic efficacy of liposome-encapsulated kanamycin against Mycobacterium intracellulare infection induced in mice. Am Rev Respir Dis 1991; 144(3 Pt 1): 575-9.
[http://dx.doi.org/10.1164/ajrccm/144.3_Pt_1.575] [PMID: 1892297]
[93]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[94]
Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1979; 1(5): 303-14.
[http://dx.doi.org/10.1111/j.1467-2494.1979.tb00224.x] [PMID: 19467076]
[95]
Shek PN, Suntres ZE, Brooks JI. Liposomes in pulmonary applications: Physicochemical considerations, pulmonary distribution and antioxidant delivery. J Drug Target 1994; 2(5): 431-42.
[http://dx.doi.org/10.3109/10611869408996819] [PMID: 7704488]
[96]
Parthasarathi G, Udupa N, Umadevi P, Pillai GK. Niosome encapsulated of vincristine sulfate: Improved anticancer activity with reduced toxicity in mice. J Drug Target 1994; 2(2): 173-82.
[http://dx.doi.org/10.3109/10611869409015907] [PMID: 8069596]
[97]
Moazeni E, Gilani K, Sotoudegan F, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul 2010; 27(7): 618-27.
[http://dx.doi.org/10.3109/02652048.2010.506579] [PMID: 20681747]
[98]
Pardakhty A, Moazeni E. Nano-niosomes in drug, vaccine and gene delivery: A rapid overview. Nanomed J 2013; 1: 1-12.
[99]
Vadlamudi HC, Sevukarajan M. Niosomal Drug Delivery System-A Review. Indo Am. J Pharm Res 2012; 2(9)
[100]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B 2011; 1: 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[101]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58: 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[102]
Bouwstra JA, van Hal DA, Hofland HEJ, et al. Preparation and characterization of nonionic surfactant vesicles. Colloids Surf A Physicochem Eng Asp 1997; 123-124: 71-80.
[http://dx.doi.org/10.1016/S0927-7757(96)03800-9]
[103]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013340315
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[104]
Chen L, Xie Z, Hu J, et al. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res 2007; 9(5): 777.
[http://dx.doi.org/10.1007/s11051-006-9103-8]
[105]
Islan GA, Durán M, Cacicedo ML, et al. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop 2017; 170: 16-42.
[http://dx.doi.org/10.1016/j.actatropica.2017.02.019] [PMID: 28232069]
[106]
Crucho CIC, Barros MT. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C 2017; 80: 771-84.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[107]
Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[108]
Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224: 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008] [PMID: 26772877]
[109]
Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 2004; 54(4): 761-6.
[http://dx.doi.org/10.1093/jac/dkh411] [PMID: 15329364]
[110]
Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004; 56(4): 459-80.
[http://dx.doi.org/10.1016/j.addr.2003.10.015] [PMID: 14969753]
[111]
Meghana GS, Gowda DV, Vishal Gupta N, et al. Current strategies and advances in nano systems a paradigm shift in management of tuberculosis: A review. Int J Chemtech Res 2017; 10: 425-40.
[112]
Pandey R, Khuller GK. Nanoparticle-based oral drug delivery system for an injectable antibiotic - streptomycin. Evaluation in a murine tuberculosis model. Chemotherapy 2007; 53(6): 437-41.
[http://dx.doi.org/10.1159/000110009] [PMID: 17952004]
[113]
Pawar KR, Babu RJ. Polymeric and lipid-based materials for topical nanoparticle delivery systems. Crit Rev Ther Drug Carrier Syst 2010; 27(5): 419-59.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i5.20] [PMID: 21083529]
[114]
Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J Control Release 2009; 136(1): 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.018] [PMID: 19331856]
[115]
Pandey R, Khuller GK. Antitubercular inhaled therapy: Opportunities, progress and challenges. J Antimicrob Chemother 2005; 55(4): 430-5.
[http://dx.doi.org/10.1093/jac/dki027] [PMID: 15761077]
[116]
Xu K, Liang ZC, Ding X, et al. Nanomaterials in the Prevention, Diagnosis, and Treatment of Mycobacterium Tuberculosis Infections. Adv Healthc Mater 2018; 7(1)
[http://dx.doi.org/10.1002/adhm.201700509] [PMID: 28941042]
[117]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[118]
Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 2005; 107(2): 215-28.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.006] [PMID: 16014318]
[119]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[120]
Nasiruddin M, Neyaz MK, Das S. Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberc Res Treat 2017; 20174920209
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[121]
Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013; 441(1-2): 202-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.042] [PMID: 23220081]
[122]
Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005; 85(4): 227-34.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[123]
Nimje N, Agarwal A, Saraogi GK, et al. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target 2009; 17(10): 777-87.
[http://dx.doi.org/10.3109/10611860903115308] [PMID: 19938949]
[124]
Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.005] [PMID: 24530885]
[125]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[126]
Hirlekar R, Garse H, Kadam V. Solid lipid nanoparticles and nanostructured lipid carriers: A review. Curr Drug Ther 2011; 6: 340-250.
[http://dx.doi.org/10.2174/157488511798109637]
[127]
Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B Biointerfaces 2016; 143: 168-76.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.040] [PMID: 27003467]
[128]
Arunkumar N, Deecaraman M, Rani C. Nanosuspension technology and its applications in drug delivery. Asian J Pharm 2009; 3(3): 168-73.
[http://dx.doi.org/10.4103/0973-8398.56293]
[129]
Patel VR, Agrawal YK. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[130]
Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
[http://dx.doi.org/10.1093/jac/45.1.77] [PMID: 10629016]
[131]
Mujoriya R, Bodla RB, Dhamande K, et al. Niosomal drug delivery system: The magic bullet. J Appl Pharm Sci 2011; 01: 20-3.
[132]
Ahmed M, Ramadan W, Rambhu D, Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie 2008; 63(11): 806-11.
[PMID: 19069240]
[133]
Cheng Y, Wang J, Rao T, et al. Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Front Biosci 2007; 13: 1447-71.
[134]
Mignani S, Majoral JP. Dendrimers as macromolecular tools to tackle from colon to brain tumor types: A concise overview. New J Chem 2013; 37: 3337-57.
[http://dx.doi.org/10.1039/c3nj00300k]
[135]
Yang H, Kao WJ. Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 2006; 17(1-2): 3-19.
[http://dx.doi.org/10.1163/156856206774879171] [PMID: 16411595]
[136]
Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14.
[http://dx.doi.org/10.1016/j.addr.2005.09.014] [PMID: 16290254]
[137]
Bermúdez JM, Cid AG, Romero AI, et al. New Trends in the Antimicrobial Agents Delivery Using Nanoparticles. Antimicrobial Nanoarchitectonics 2017.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00001-X]
[138]
Zhang L, Pornpattananangku D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[139]
Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002; 23(16): 3359-68.
[http://dx.doi.org/10.1016/S0142-9612(02)00036-4] [PMID: 12099278]
[140]
Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 2010; 62(4-5): 547-59.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[141]
Sarei F, Dounighi NM, Zolfagharian H, Khaki P, Bidhendi SM. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 2013; 75(4): 442-9.
[http://dx.doi.org/10.4103/0250-474X.119829] [PMID: 24302799]
[142]
Lopes M, Abrahim B, Veiga F, et al. Preparation methods and applications behind alginate-based particles. Expert Opin Drug Deliv 2017; 14(6): 769-82.
[http://dx.doi.org/10.1080/17425247.2016.1214564] [PMID: 27492462]
[143]
Jiang G, Min SH, Kim MN, Lee DC, Lim MJ, Yeom YI. Alginate/PEI/DNA polyplexes: A new gene delivery system. Yao Xue Xue Bao 2006; 41(5): 439-45.
[PMID: 16848321]
[144]
Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 1994; 11(8): 1186-9.
[http://dx.doi.org/10.1023/A:1018901302450] [PMID: 7971722]
[145]
Vila A, Sánchez A, Janes K, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 2004; 57(1): 123-31.
[http://dx.doi.org/10.1016/j.ejpb.2003.09.006] [PMID: 14729088]
[146]
Sharma S, Mukkur TK, Benson HA, Chen Y. Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles. J Pharm Sci 2012; 101(1): 233-44.
[http://dx.doi.org/10.1002/jps.22763] [PMID: 21953499]
[147]
Li X, Kong X, Shi S, et al. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol 2008; 8: 89-99.
[http://dx.doi.org/10.1186/1472-6750-8-89] [PMID: 19019229]
[148]
González Ferreiro M, Tillman L, Hardee G, Bodmeier R. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers. Int J Pharm 2002; 239(1-2): 47-59.
[http://dx.doi.org/10.1016/S0378-5173(02)00030-3] [PMID: 12052690]
[149]
Ghiasi Z, Sajadi Tabasi A, Tafaghodi M. Preparation and in vitro characterization of alginate microspheres encapsulated with Autoclaved Leishmania major (ALM) and CpG -ODN. Iran J Basic Med Sci 2007; 10: 90-8.
[150]
Costa-Gouveia J, Pancani E, Jouny S, et al. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 2017; 7(1): 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[151]
Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007; 66(3): 303-17.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.022] [PMID: 17481869]
[152]
Moretton MA, Glisoni RJ, Chiappetta DA, et al. Synthesis and characterization of amphiphilic poly/epsilon-caprolactone)-poly (ethyleneglycol) block copolymers. Optimization of the solubility andstability of rifampicin by means of encapsulation into polymeric micelles, BIOOMAT 2009. InIWorkshop on Artificial Organs, Biomaterials and Tissue Engineering, Latin American Society of Biomaterials, Tissue Engineering and Artificial Organs (SLABO), Rosario, Argentina 2009 Aug
[153]
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 1-27.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[154]
Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84: 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[155]
Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010; 31(3): 438-48.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.060] [PMID: 19800115]
[156]
Giri S, Trewyn BG, Lin VS. Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine (Lond) 2007; 2(1): 99-111.
[http://dx.doi.org/10.2217/17435889.2.1.99] [PMID: 17716196]
[157]
Clemens DL, Lee BY, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012; 56(5): 2535-45.
[http://dx.doi.org/10.1128/AAC.06049-11] [PMID: 22354311]
[158]
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8: 1499.
[http://dx.doi.org/10.3389/fimmu.2017.01499] [PMID: 29163551]
[159]
Méndez-Samperio P. The human cathelicidin hCAP18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides 2010; 31(9): 1791-8.
[http://dx.doi.org/10.1016/j.peptides.2010.06.016] [PMID: 20600427]
[160]
Silva T, Magalhães B, Maia S, et al. Killing of Mycobacterium avium by lactoferricin peptides: Improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 2014; 58(6): 3461-7.
[http://dx.doi.org/10.1128/AAC.02728-13] [PMID: 24709266]
[161]
Kwok PC, Grabarek A, Chow MY, et al. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int J Pharm 2015; 491(1-2): 367-74.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.001] [PMID: 26151107]
[162]
Silva JP, Gonçalves C, Costa C, et al. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release 2016; 235: 112-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.064] [PMID: 27261333]
[163]
Kulshreshtha NM, Jadhav I, Dixit M, et al. Nanostructures as Antimicrobial Therapeutics. Antimicrobial Nanoarchitectonics From Synthesis to Applications 2017; pp. 29-59.
[164]
Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66(2): 223-49.
[http://dx.doi.org/10.1128/MMBR.66.2.223-249.2002] [PMID: 12040125]
[165]
Vergne AF, Walz AJ, Miller MJ. Iron chelators from mycobacteria (1954-1999) and potential therapeutic applications. Nat Prod Rep 2000; 17(1): 99-116.
[http://dx.doi.org/10.1039/a809397k] [PMID: 10714901]
[166]
Rohde K, Yates RM, Purdy GE, Russell DG. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 2007; 219: 37-54.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00547.x] [PMID: 17850480]
[167]
Deb C, Lee CM, Dubey VS, et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 2009; 4(6)E6077
[http://dx.doi.org/10.1371/journal.pone.0006077] [PMID: 19562030]
[168]
Dannenberg AM. Pathogenesis of Human Pulmonary Tuberculosis: Insights from the Rabbit Model1st. Washington, DC: ASM Press 2006; pp. 1-453.
[http://dx.doi.org/10.1128/9781555815684]
[169]
Baker JJ, Johnson BK, Abramovitch RB. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol Microbiol 2014; 94(1): 56-69.
[http://dx.doi.org/10.1111/mmi.12688] [PMID: 24975990]
[170]
Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: A review. Semin Immunopathol 2016; 38(2): 167-83.
[http://dx.doi.org/10.1007/s00281-015-0537-x] [PMID: 26510950]
[171]
Bourdeaux F, Hammer CA, Vogt S, et al. Flavin Storage and Sequestration by Mycobacterium tuberculosis Dodecin. ACS Infect Dis 2018; 4(7): 1082-92.
[http://dx.doi.org/10.1021/acsinfecdis.7b00237] [PMID: 29608272]
[172]
Olakanmi O, Britigan BE, Schlesinger LS. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect Immun 2000; 68(10): 5619-27.
[http://dx.doi.org/10.1128/IAI.68.10.5619-5627.2000] [PMID: 10992462]
[173]
Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One 2017; 12(5)E0177987
[http://dx.doi.org/10.1371/journal.pone.0177987] [PMID: 28542623]
[174]
Choi SR, Britigan BE, Narayanasamy P. Ga(III) Nanoparticles Inhibit Growth of both Mycobacterium tuberculosis and HIV and Release of Interleukin-6 (IL-6) and IL-8 in Coinfected Macrophages. Antimicrob Agents Chemother 2017; 61(4): E02505-16.
[http://dx.doi.org/10.1128/AAC.02505-16] [PMID: 28167548]
[175]
Narayanasamy P, Switzer BL, Britigan BE. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep 2015; 5: 8824.
[http://dx.doi.org/10.1038/srep08824] [PMID: 25744727]
[176]
Singh R, Nawale LU, Arkile M, et al. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int J Antimicrob Agents 2015; 46(2): 183-8.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.014] [PMID: 26009020]
[177]
Selim A, Elhaig MM, Taha SA, Nasr EA. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drugresistant tuberculosis strains. Rev - Off Int Epizoot 2018; 37(3): 823-30.
[http://dx.doi.org/10.20506/rst.37.3.2888] [PMID: 30964466]
[178]
Van Dong P, Ha CH, Kasbohm J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2012; 2(1): 1-9.
[http://dx.doi.org/10.1186/2228-5326-2-9]
[179]
Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012; 112(5): 841-52.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[180]
Banu A, Rathod V. Biosynthesis of Monodispersed Silver Nanoparticles and their Activity against Mycobacterium tuberculosis. J Nanomedine Biotherapeutic Discov 2013; 3: 110.
[http://dx.doi.org/10.4172/2155-983X.1000110]
[181]
Seth D, Choudhury SR, Pradhan S, et al. Nature-inspired novel drug design paradigm using nanosilver: Efficacy on multi-drug-resistant clinical isolates of tuberculosis. Curr Microbiol 2011; 62(3): 715-26.
[http://dx.doi.org/10.1007/s00284-010-9770-7] [PMID: 20936471]
[182]
Giongo JL, Vaucher RDA, Borin D, et al. Antimycobacterial, antimicrobial and antifungal activities of geranium oil-loaded nano capsules. Int J Pharm Pharm Sci 2015; 7: 414-9.
[183]
Tousif S, Singh DK, Mukherjee S, et al. Nanoparticle-Formulated Curcumin Prevents Posttherapeutic Disease Reactivation and Reinfection with Mycobacterium tuberculosis following Isoniazid Therapy. Front Immunol 2017; 8: 739.
[http://dx.doi.org/10.3389/fimmu.2017.00739] [PMID: 28713372]
[184]
Jafari A, Jafari Nodooshan S, Safarkar R, et al. Toxicity effects of AgZnO nanoparticles and rifampicin on Mycobacterium tuberculosis into the macrophage. J Basic Microbiol 2018; 58(1): 41-51.
[http://dx.doi.org/10.1002/jobm.201700289] [PMID: 29105782]
[185]
Leidinger P, Treptow J, Hagens K, et al. Isoniazid@Fe2 O3 Nanocontainers and Their Antibacterial Effect on Tuberculosis Mycobacteria. Angew Chem Int Ed Engl 2015; 54(43): 12597-601.
[http://dx.doi.org/10.1002/anie.201505493] [PMID: 26332072]
[186]
Mohanty S, Jena P, Mehta R, et al. Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages. Antimicrob Agents Chemother 2013; 57(8): 3688-98.
[http://dx.doi.org/10.1128/AAC.02475-12] [PMID: 23689720]
[187]
Ali HR, Ali MR, Wu Y, et al. Gold Nanorods as Drug Delivery Vehicles for Rifampicin Greatly Improve the Efficacy of Combating Mycobacterium tuberculosis with Good Biocompatibility with the Host Cells. Bioconjug Chem 2016; 27(10): 2486-92.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00430] [PMID: 27595304]
[188]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007; 2(5): 681-93.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[189]
Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014; 8(10): 10682-6.
[http://dx.doi.org/10.1021/nn5042625] [PMID: 25232643]
[190]
Ellis T, Chiappi M, García-Trenco A, et al. Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis. ACS Nano 2018; 12(6): 5228-40.
[http://dx.doi.org/10.1021/acsnano.7b08264] [PMID: 29767993]
[191]
Lin YE, Vidic RD, Stout JE, et al. Inactivation of Mycobacterium avium by copper and silver ions. Water Res 1998; 32(7): 1997-2000.
[http://dx.doi.org/10.1016/S0043-1354(97)00460-0]
[192]
Lin YH, Chang CH, Wu YS, Hsu YM, Chiou SF, Chen YJ. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials 2009; 30(19): 3332-42.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.036] [PMID: 19299008]
[193]
Peppas NA. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm 2004; 277(1-2): 11-7.
[http://dx.doi.org/10.1016/j.ijpharm.2003.03.001] [PMID: 15158964]
[194]
Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 2007; 8(10): 3054-60.
[http://dx.doi.org/10.1021/bm0703923] [PMID: 17877397]
[195]
Wikberg M, Ulmius J, Ragnarsson G. Review article: Targeted drug delivery in treatment of intestinal diseases. Aliment Pharmacol Ther 1997; 11(Suppl. 3): 109-15.
[http://dx.doi.org/10.1111/j.1365-2036.1997.tb00815.x] [PMID: 9467985]
[196]
Singh N, Gautam SP, Singh HL, et al. Isonizid loded dendrimer based nano carriers for the delivery of anti-tuberculosis. Indian Res J Pharmacol Sci 2016; 3: 519-29.
[197]
Sharma A, Pandey R, Sharma S, Khuller GK. Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents 2004; 24(6): 599-604.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.07.010] [PMID: 15555884]
[198]
Ohashi K, Kabasawa T, Ozeki T, Okada H. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release 2009; 135(1): 19-24.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.027] [PMID: 19121349]
[199]
Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother 2004; 54(4): 761-6.
[http://dx.doi.org/10.1093/jac/dkh411] [PMID: 15329364]
[200]
Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 2009; 27: 393-422.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132703] [PMID: 19302046]
[201]
Rohde K, Yates RM, Purdy GE, Russell DG. Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 2007; 219: 37-54.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00547.x] [PMID: 17850480]
[202]
Pandey R, Khuller GK. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrob Chemother 2006; 57(6): 1146-52.
[http://dx.doi.org/10.1093/jac/dkl128] [PMID: 16597631]
[203]
Pandey R, Zahoor A, Sharma S, Khuller GK. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb) 2003; 83(6): 373-8.
[http://dx.doi.org/10.1016/j.tube.2003.07.001] [PMID: 14623168]
[204]
Johnson CM, Pandey R, Sharma S, et al. Oral therapy with poly (DL-lactide-co-glycolide) nanoparticle encapsulated antituberculosis drugs against Mycobacterium tuberculosis infected guinea pigs. J Antimicrobial Agents Chemother 2005; 49: 4335.
[http://dx.doi.org/10.1128/AAC.49.10.4335-4338.2005]
[205]
Grewal TK, Majeed S, Sharma S. Therapeutic implications of nano-encapsulated rifabutin, azithromycin & ethambutol against experimental Mycobacterium avium infection in mice. Indian J Med Res 2018; 147(6): 594-602.
[http://dx.doi.org/10.4103/ijmr.IJMR_2004_15] [PMID: 30168492]
[206]
Pandey R, Khuller GK. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model. J Antimicrob Chemother 2004; 54(1): 266-8.
[http://dx.doi.org/10.1093/jac/dkh260] [PMID: 15128731]
[207]
Saraogi GK, Sharma B, Joshi B, et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target 2011; 19(3): 219-27.
[http://dx.doi.org/10.3109/1061186X.2010.492522] [PMID: 20540651]
[208]
Mullaicharam AR, Murthy RSR. Lung accumulation of niosome-entrapped rifampicin following intravenous and intratracheal administration in the rat. J Drug Deliv Sci Technol 2004; 14(2): 99-104.
[http://dx.doi.org/10.1016/S1773-2247(04)50020-5]
[209]
Dhillon J, Fielding R, Adler-Moore J, Goodall RL, Mitchison D. The activity of low-clearance liposomal amikacin in experimental murine tuberculosis. J Antimicrob Chemother 2001; 48(6): 869-76.
[http://dx.doi.org/10.1093/jac/48.6.869] [PMID: 11733471]
[210]
Holladay RJ, Christensen H, Moeller WD. Apparatus and method for producing antimicrobial silver solution US patent 6 2004; 743:348.
[211]
Holladay RJ, Christensen H, Moeller WD. Treatment of humans with colloidal silver composition, US patent 7 2006; 135:195.
[212]
Davies GR. Early clinical development of anti-tuberculosis drugs: Science, statistics and sterilizing activity. Tuberculosis (Edinb) 2010; 90(3): 171-6.
[http://dx.doi.org/10.1016/j.tube.2010.03.007] [PMID: 20382567]
[213]
Mitchison DA. Clinical development of anti-tuberculosis drugs. J Antimicrob Chemother 2006; 58(3): 494-5.
[http://dx.doi.org/10.1093/jac/dkl260] [PMID: 16840430]
[214]
Tibotec Pharmaceuticals Limited. Antibacterial activity, safety and tolerability of TMC 207 in patients with multidrug resistant Mycobacterium tuberculosis (MDR-TB). ClinicalTrials.gov. 2007.www.clinicaltrials.gov/ct/show/NCT00449644?order=1
[215]
Lounis N, Veziris N, Chauffour A, Truffot-Pernot C, Andries K, Jarlier V. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration. Antimicrob Agents Chemother 2006; 50(11): 3543-7.
[http://dx.doi.org/10.1128/AAC.00766-06] [PMID: 16954317]
[216]
Matteelli A, Carvalho AC, Dooley KE, Kritski A. TMC207: The first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol 2010; 5(6): 849-58.
[http://dx.doi.org/10.2217/fmb.10.50] [PMID: 20521931]
[217]
Lenaerts AJ, Hoff D, Aly S, et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 2007; 51(9): 3338-45.
[http://dx.doi.org/10.1128/AAC.00276-07] [PMID: 17517834]
[218]
Ibrahim M, Andries K, Lounis N, et al. Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis. Antimicrob Agents Chemother 2007; 51(3): 1011-5.
[http://dx.doi.org/10.1128/AAC.00898-06] [PMID: 17178794]
[219]
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A randomised trial. Lancet 2012; 380(9846): 986-93.
[http://dx.doi.org/10.1016/S0140-6736(12)61080-0] [PMID: 22828481]
[220]
Diekema DJ, Jones RN. Oxazolidinone antibiotics. Lancet 2001; 358(9297): 1975-82.
[http://dx.doi.org/10.1016/S0140-6736(01)06964-1] [PMID: 11747939]
[221]
Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 2012; 367(16): 1508-18.
[http://dx.doi.org/10.1056/NEJMoa1201964] [PMID: 23075177]
[222]
Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: A systematic review and meta-analysis. Int J Tuberc Lung Dis 2012; 16(4): 447-54.
[http://dx.doi.org/10.5588/ijtld.11.0451] [PMID: 22325685]
[223]
Reddy VM, Dubuisson T, Einck L, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J Antimicrob Chemother 2012; 67(5): 1163-6.
[http://dx.doi.org/10.1093/jac/dkr589] [PMID: 22258923]
[224]
Grosset JH, Singer TG, Bishai WR. New drugs for the treatment of tuberculosis: Hope and reality. Int J Tuberc Lung Dis 2012; 16(8): 1005-14.
[http://dx.doi.org/10.5588/ijtld.12.0277] [PMID: 22762423]
[225]
Lienhardt C, Vernon A, Raviglione MC. New drugs and new regimens for the treatment of tuberculosis: Review of the drug development pipeline and implications for national programmes. Curr Opin Pulm Med 2010; 16(3): 186-93.
[http://dx.doi.org/10.1097/MCP.0b013e328337580c] [PMID: 20216421]
[226]
Chaudhuri S, Li L, Zimmerman M, et al. Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. eLife 2018; 7E36782
[http://dx.doi.org/10.7554/eLife.36782] [PMID: 30152756]
[227]
Larimer C, Islam MS, Ojha A, Nettleship I. Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a common antibiotic. Biometals 2014; 27(4): 695-702.
[http://dx.doi.org/10.1007/s10534-014-9761-4] [PMID: 24989695]
[228]
Parlane NA, Rehm BH, Wedlock DN, Buddle BM. Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against Mycobacterium bovis infection - a review. Vet Immunol Immunopathol 2014; 158(1-2): 8-13.
[http://dx.doi.org/10.1016/j.vetimm.2013.04.002] [PMID: 23707076]
[229]
Lee JW, Parlane NA, Rehm BHA, Buddle BM, Heiser A. Engineering Mycobacteria for the Production of Self-Assembling Biopolyesters Displaying Mycobacterial Antigens for Use as a Tuberculosis Vaccine. Appl Environ Microbiol 2017; 83(5): E02289-16.
[http://dx.doi.org/10.1128/AEM.02289-16] [PMID: 28087528]
[230]
Feng G, Jiang Q, Xia M, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 2013; 8(4)E61135
[http://dx.doi.org/10.1371/journal.pone.0061135] [PMID: 23637790]
[231]
Montoya J, Solon JA, Cunanan SR, et al. A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 2013; 33(8): 1360-75.
[http://dx.doi.org/10.1007/s10875-013-9949-3] [PMID: 24142232]
[232]
Woodworth JS, Cohen SB, Moguche AO, et al. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung. Mucosal Immunol 2017; 10(2): 555-64.
[http://dx.doi.org/10.1038/mi.2016.70] [PMID: 27554293]
[233]
Henson D, Dissel J, Joosten S, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J Antimicrob Chemother 2014; 67(5): 1163-6.
[234]
Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iran J Basic Med Sci 2018; 21(2): 116-23.
[PMID: 29456807]
[235]
Torres-Sangiao E, Holban AM, Gestal MC. Advanced Nanobiomaterials: Vaccines, Diagnosis and Treatment of Infectious Diseases. Molecules 2016; 21(7)E867
[http://dx.doi.org/10.3390/molecules21070867] [PMID: 27376260]
[236]
Lambe U, Minakshi P, Basanti B, et al. Nanodiagnostics: A new frontier for veterinary and medical sciences. J Exp Biol Agric Sci 2016; 4(3S): 307-20.
[http://dx.doi.org/10.18006/2016.4(3S).307.320]
[237]
Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[238]
Malik YS, Kumar N, Joshi VG, et al. Nanotechnology: Applications in animal disease diagnosis In a multi volume set book on Recent Developments in Biotechnology. USA: Studium Press LLC 2013.
[239]
Tsai TT, Huang CY, Chen CA, et al. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens 2017; 2(9): 1345-54.
[http://dx.doi.org/10.1021/acssensors.7b00450] [PMID: 28901134]
[240]
Kim EJ, Kim EB, Lee SW, et al. An easy and sensitive sandwich assay for detection of Mycobacterium tuberculosis Ag85B antigen using quantum dots and gold nanorods. Biosens Bioelectron 2017; 87: 150-6.
[http://dx.doi.org/10.1016/j.bios.2016.08.034] [PMID: 27551994]
[241]
Wu HJ, Li Y, Fan J, et al. Antibody-free detection of Mycobacterium tuberculosis antigen using customized nanotraps. Anal Chem 2014; 86(4): 1988-96.
[http://dx.doi.org/10.1021/ac4027669] [PMID: 24446580]
[242]
Stewart LD, McNair J, McCallan L, Thompson S, Kulakov LA, Grant IR. Production and evaluation of antibodies and phage display-derived peptide ligands for immunomagnetic separation of Mycobacterium bovis. J Clin Microbiol 2012; 50(5): 1598-605.
[http://dx.doi.org/10.1128/JCM.05747-11] [PMID: 22322353]
[243]
Gliddon HD, Howes PD, Kaforou M, Levin M, Stevens MM. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale 2016; 8(19): 10087-95.
[http://dx.doi.org/10.1039/C6NR00484A] [PMID: 27088427]
[244]
Bobadilla-del Valle M, Torres-González P, Cervera-Hernández ME, et al. Trends of Mycobacterium bovis isolation and first-line anti-tuberculosis drug susceptibility profile: A fifteen-year laboratory-based surveillance. PLoS Negl Trop Dis 2015; 9(9)E0004124
[http://dx.doi.org/10.1371/journal.pntd.0004124] [PMID: 26421930]
[245]
Yang M, Gao CH, Hu J, Zhao L, Huang Q, He ZG. InbR, a TetR family regulator, binds with isoniazid and influences multidrug resistance in Mycobacterium bovis BCG. Sci Rep 2015; 5: 13969.
[http://dx.doi.org/10.1038/srep13969] [PMID: 26353937]
[246]
Owusu E, Newman MJ, Kotey NK, Akumwena A, Bannerman E. Susceptibility profiles of Mycobacterium ulcerans isolates to streptomycin and rifampicin in two districts of the eastern region of ghana. Int J Microbiol 2016; 20168304524
[http://dx.doi.org/10.1155/2016/8304524] [PMID: 28070190]
[247]
Jansson M, Beissner M, Phillips RO, et al. Comparison of two assays for molecular determination of rifampin resistance in clinical samples from patients with Buruli ulcer disease. J Clin Microbiol 2014; 52(4): 1246-9.
[http://dx.doi.org/10.1128/JCM.03119-13] [PMID: 24478404]
[248]
Litvinov V, Makarova M, Galkina K, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS One 2018; 13(9)E0203108
[http://dx.doi.org/10.1371/journal.pone.0203108] [PMID: 30222736]
[249]
Wang X, Li H, Jiang G, et al. Prevalence and drug resistance of nontuberculous mycobacteria, northern China, 2008-2011. Emerg Infect Dis 2014; 20(7): 1252-3.
[http://dx.doi.org/10.3201/eid2007.131801] [PMID: 24959839]
[250]
Jayasingam SD, Zin T, Ngeow YF. Antibiotic resistance in Mycobacterium Abscessus and Mycobacterium Fortuitum isolates from Malaysian patients. Int J Mycobacteriol 2017; 6(4): 387-90.
[http://dx.doi.org/10.4103/ijmy.ijmy_152_17] [PMID: 29171453]
[251]
Li B, Yang S, Chu H, et al. Relationship between Antibiotic Susceptibility and Genotype in Mycobacterium abscessus Clinical Isolates. Front Microbiol 2017; 8: 1739.
[http://dx.doi.org/10.3389/fmicb.2017.01739] [PMID: 28959242]
[252]
Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel) 2014; 3(3): 317-40.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[253]
Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J Antimicrob Chemother 2011; 66(7): 1417-30.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[254]
Ramaswamy SV, Reich R, Dou SJ, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003; 47(4): 1241-50.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[255]
Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994; 263(5144): 227-30.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[256]
Ho YM, Sun YJ, Wong SY, Lee AS. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2009; 53(9): 4010-2.
[http://dx.doi.org/10.1128/AAC.00433-09] [PMID: 19581462]
[257]
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73(5): 1138-51.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[258]
Fonseca JD, Knight GM, McHugh TD. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int J Infect Dis 2015; 32: 94-100.
[http://dx.doi.org/10.1016/j.ijid.2015.01.014] [PMID: 25809763]
[259]
Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem 1996; 65: 215-39.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001243] [PMID: 8811179]
[260]
Caws M, Duy PM, Tho DQ, Lan NT, Hoa DV, Farrar J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J Clin Microbiol 2006; 44(7): 2333-7.
[http://dx.doi.org/10.1128/JCM.00330-06] [PMID: 16825345]
[261]
Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: A review. Int J Tuberc Lung Dis 2003; 7(1): 6-21.
[PMID: 12701830]
[262]
Zimhony O, Cox JS, Welch JT, Vilchèze C, Jacobs WR Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 2000; 6(9): 1043-7.
[http://dx.doi.org/10.1038/79558] [PMID: 10973326]
[263]
Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 1996; 2(6): 662-7.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[264]
Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011; 333(6049): 1630-2.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[265]
Telenti A, Philipp WJ, Sreevatsan S, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 1997; 3(5): 567-70.
[http://dx.doi.org/10.1038/nm0597-567] [PMID: 9142129]
[266]
Sreevatsan S, Stockbauer KE, Pan X, et al. Ethambutol resistance in Mycobacterium tuberculosis: Critical role of embB mutations. Antimicrob Agents Chemother 1997; 41(8): 1677-81.
[http://dx.doi.org/10.1128/AAC.41.8.1677] [PMID: 9257740]
[267]
Safi H, Lingaraju S, Amin A, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 2013; 45(10): 1190-7.
[http://dx.doi.org/10.1038/ng.2743] [PMID: 23995136]
[268]
Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987; 327(6121): 389-94.
[http://dx.doi.org/10.1038/327389a0] [PMID: 2953976]
[269]
Okamoto S, Tamaru A, Nakajima C, et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 2007; 63(4): 1096-106.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05585.x] [PMID: 17238915]
[270]
Verma JS, Gupta Y, Nair D, et al. Evaluation of gidB alterations responsible for streptomycin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2014; 69(11): 2935-41.
[http://dx.doi.org/10.1093/jac/dku273] [PMID: 25074855]
[271]
Jagielski T, Ignatowska H, Bakuła Z, et al. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS One 2014; 9(6)E100078
[http://dx.doi.org/10.1371/journal.pone.0100078] [PMID: 24937123]
[272]
Alangaden GJ, Kreiswirth BN, Aouad A, et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42(5): 1295-7.
[http://dx.doi.org/10.1128/AAC.42.5.1295] [PMID: 9593173]
[273]
Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 2004; 53(1): 275-82.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04120.x] [PMID: 15225321]
[274]
Feuerriegel S, Köser C, Trübe L, et al. Thr202Ala in thyA is a marker for the Latin American Mediterranean lineage of the Mycobacterium tuberculosis complex rather than para-aminosalicylic acid resistance. Antimicrob Agents Chemother 2010; 54(11): 4794-8.
[http://dx.doi.org/10.1128/AAC.00738-10] [PMID: 20805400]
[275]
Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J Antimicrob Chemother 2011; 66(7): 1417-30.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[276]
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009; 2(1): 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[277]
Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994; 38(4): 773-80.
[http://dx.doi.org/10.1128/AAC.38.4.773] [PMID: 8031045]
[278]
DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE III. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2000; 97(17): 9677-82.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[279]
Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2011; 55(1): 355-60.
[http://dx.doi.org/10.1128/AAC.01030-10] [PMID: 20974869]
[280]
Vilchèze C, Av-Gay Y, Attarian R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 2008; 69(5): 1316-29.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06365.x] [PMID: 18651841]
[281]
Manjunatha UH, Boshoff H, Dowd CS, et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2006; 103(2): 431-6.
[http://dx.doi.org/10.1073/pnas.0508392103] [PMID: 16387854]
[282]
Singh R, Manjunatha U, Boshoff HI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008; 322(5906): 1392-5.
[http://dx.doi.org/10.1126/science.1164571] [PMID: 19039139]
[283]
Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2010; 54(3): 1022-8.
[http://dx.doi.org/10.1128/AAC.01611-09] [PMID: 20038615]
[284]
Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 2014; 9(7)E102135
[http://dx.doi.org/10.1371/journal.pone.0102135] [PMID: 25010492]
[285]
Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother 2017; 72(7): 1901-6.
[http://dx.doi.org/10.1093/jac/dkx094] [PMID: 28387862]
[286]
Zhang S, Chen J, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 70(9): 2507-10.
[http://dx.doi.org/10.1093/jac/dkv150] [PMID: 26045528]
[287]
Bloemberg GV, Keller PM, Stucki D, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 2015; 373(20): 1986-8.
[http://dx.doi.org/10.1056/NEJMc1505196] [PMID: 26559594]
[288]
Mehta RT, Keyhani A, McQueen TJ, Rosenbaum B, Rolston KV, Tarrand JJ. In vitro activities of free and liposomal drugs against Mycobacterium avium-M. intracellulare complex and M. tuberculosis. Antimicrob Agents Chemother 1993; 37(12): 2584-7.
[http://dx.doi.org/10.1128/AAC.37.12.2584] [PMID: 8109920]
[289]
Agarwal A, Kandpal H, Gupta HP, Singh NB, Gupta CM. Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrob Agents Chemother 1994; 38(3): 588-93.
[http://dx.doi.org/10.1128/AAC.38.3.588] [PMID: 8203859]
[290]
Justo OR, Moraes AM. Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Deliv 2003; 10(3): 201-7.
[http://dx.doi.org/10.1080/713840401] [PMID: 12944141]
[291]
Gaspar MM, Cruz A, Penha AF, et al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents 2008; 31(1): 37-45.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.08.008] [PMID: 18006283]
[292]
Ribeiro R. Development and Characterization of Nanocarrier Systems for the Delivery of Antitubercular Drugs 2014.
[293]
Kisich KO, Gelperina S, Higgins MP, et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 2007; 345(1-2): 154-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.062] [PMID: 17624699]
[294]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
[PMID: 18610673]
[295]
Kailasam S, Daneluzzi D, Gangadharam PR. Maintenance of therapeutically active levels of isoniazid for prolonged periods in rabbits after a single implant of biodegradable polymer. Tuber Lung Dis 1994; 75(5): 361-5.
[http://dx.doi.org/10.1016/0962-8479(94)90082-5] [PMID: 7841429]
[296]
Richards SJ, Isufi K, Wilkins LE, Lipecki J, Fullam E, Gibson MI. Multivalent Antimicrobial Polymer Nanoparticles Target Mycobacteria and Gram-Negative Bacteria by Distinct Mechanisms. Biomacromolecules 2018; 19(1): 256-64.
[http://dx.doi.org/10.1021/acs.biomac.7b01561] [PMID: 29195272]
[297]
de Faria TJ, Roman M, de Souza NM, et al. An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob Agents Chemother 2012; 56(5): 2259-67.
[http://dx.doi.org/10.1128/AAC.05993-11] [PMID: 22330919]
[298]
Dutt M, Khuller GK. Sustained release of isoniazid from a single injectable dose of poly (DL-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int J Antimicrob Agents 2001; 17(2): 115-22.
[http://dx.doi.org/10.1016/S0924-8579(00)00330-7] [PMID: 11165115]
[299]
Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int J Nanomedicine 2018; 13: 4303-18.
[http://dx.doi.org/10.2147/IJN.S163925] [PMID: 30087562]
[300]
Lemmer Y, Kalombo L, Pietersen RD, et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release 2015; 211: 94-104.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.005] [PMID: 26055640]
[301]
Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006; 14(8): 546-56.
[http://dx.doi.org/10.1080/10611860600825159] [PMID: 17050121]
[302]
Kumar PV, Agashe H, Dutta T, Jain NK. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv 2007; 4(1): 11-9.
[http://dx.doi.org/10.2174/156720107779314794] [PMID: 17269913]
[303]
Bellini RG, Guimarães AP, Pacheco MA, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 2015; 60: 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[304]
Aboutaleb E, Noori M, Gandomi N, et al. Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett 2012; 2: 33.
[http://dx.doi.org/10.1186/2228-5326-2-33]
[305]
Gaspar DP, Gaspar MM, Eleutério CV, et al. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Mol Pharm 2017; 14(9): 2977-90.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00169] [PMID: 28809501]
[306]
Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb) 2005; 85(5-6): 415-20.
[http://dx.doi.org/10.1016/j.tube.2005.08.009] [PMID: 16256437]
[307]
Jain CP, Vyas SP, Dixit VK. Niosomal system for delivery of rifampicin to lymphatics. Indian J Pharm Sci 2006; 68: 575-8.
[http://dx.doi.org/10.4103/0250-474X.29622]
[308]
Vieira ACC, Chaves LL, Pinheiro M, et al. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol. 2018; 46(sup1): 653-63.
[http://dx.doi.org/10.1080/21691401.2018.1434186] [PMID: 29433346]
[309]
Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
[http://dx.doi.org/10.1093/jac/45.1.77] [PMID: 10629016]
[310]
Bhave T, Ghoderao P, Sanghavi S, et al. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria Adv Nat Sci Nanosci Nanotechnol 2013 4(4).
[http://dx.doi.org/10.1088/2043-6262/4/4/045015]
[311]
Mehta SK, Kaur G, Bhasin KK. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs. AAPS PharmSciTech 2010; 11(1): 143-53.
[http://dx.doi.org/10.1208/s12249-009-9356-5] [PMID: 20087697]
[312]
Mehta SK, Kaur G, Bhasin KK. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: Effect on microstructure and physical parameters. Pharm Res 2008; 25(1): 227-36.
[http://dx.doi.org/10.1007/s11095-007-9355-8] [PMID: 17577642]
[313]
Clemens DL, Lee BY, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother 2012; 56(5): 2535-45.
[http://dx.doi.org/10.1128/AAC.06049-11] [PMID: 22354311]
[314]
Rani NP, Suriyaprakash TNK, Senthamarai R. Formulation and evaluation of rifampicin and gatifloxacin niosomes on logarithmic-phase cultures of Mycobacterium tuberculosis. Int J Pharma Bio Sci 2010; 1: 379-87.
[315]
El-Ridy MS, Yehia SA, Kassem MA, Mostafa DM, Nasr EA, Asfour MH. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv 2015; 22(1): 21-36.
[http://dx.doi.org/10.3109/10717544.2013.868556] [PMID: 24359403]
[316]
Mehta SK, Jindal N. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Colloids Surf B Biointerfaces 2013; 101: 434-41.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.006] [PMID: 23010052]
[317]
El-Ridy MS, Abdelbary A, Nasr EA, et al. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev Ind Pharm 2011; 37(9): 1110-8.
[http://dx.doi.org/10.3109/03639045.2011.560605] [PMID: 21417612]
[318]
Scheuch G, Kohlhaeufl MJ, Brand P, Siekmeier R. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv Drug Deliv Rev 2006; 58(9-10): 996-1008.
[http://dx.doi.org/10.1016/j.addr.2006.07.009] [PMID: 16996638]
[319]
Ahmad Z, Pandey R, Sharma S, et al. Evaluation of anti-tubercular drug loaded alginate nanoparticles against experimental tuberculosis. Nanoscience 2006; 1: 81-5.
[320]
Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005; 26(4): 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[321]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[322]
Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 2010; 79(2): 467-79.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.016] [PMID: 20627665]
[323]
Pandey R, Khuller GK. Alginate as a drug delivery carrier. in Hand Book of Carbohyderate Engineering, KJ. Yarema, 2005; Ed., p. 799, Taylor and Francis Group, CRC Press, Boca Raton, Fla, USA
[324]
Das I, Padhi A, Mukherjee S, Dash DP, Kar S, Sonawane A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology 2017; 28(16)165101
[http://dx.doi.org/10.1088/1361-6528/aa60fd] [PMID: 28206982]
[325]
Abdelghany S, Alkhawaldeh M, AlKhatib HS. Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J Drug Deliv Sci Technol 2017; 39: 442-9.
[http://dx.doi.org/10.1016/j.jddst.2017.04.034]
[326]
Zhou J, Jayawardana KW, Kong N, et al. Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomater Sci Eng 2015; 1(12): 1250-5.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00274]
[327]
Caetano LA, Almeida AJ, Gonçalves LM. Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation. Mar Drugs 2016; 14(5)E90
[http://dx.doi.org/10.3390/md14050090] [PMID: 27187418]
[328]
Bellaire B, Narasimhan B. Antimicrobial compositions and methods. US Patent 8449916 B1. 2013 http://www.techtransfer.iastate.edu/documents/filelibrary/images/p df/08449916_45C06CDCC1557.pdf
[329]
Gajendiran M, Balashanmugam P, Kalaichelvan PT, et al. Multi-drug delivery of tuberculosis drugs by π-back bonded gold nanoparticles with multiblock copolyesters. Mater Res Express 2016; 3(6)065401
[http://dx.doi.org/10.1088/2053-1591/3/6/065401]
[330]
Karki R, Mamatha GC, Subramanya G, et al. Preparation, characterization and tissue disposition of niosomes containing isoniazid. Rasayan J Chem 2008; 1(2): 224-7.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 13
Year: 2019
Page: [1554 - 1579]
Pages: 26
DOI: 10.2174/1381612825666190620094041
Price: $65

Article Metrics

PDF: 30
HTML: 5