Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Changes in Expression Pattern of SEMA3F Depending on Endometrial Cancer Grade - Pilot Study

Author(s): Konrad Dziobek*, Marcin Opławski, Beniamin Grabarek, Nikola Zmarzły, Robert Kiełbasiński, Ewa Leśniak, Piotr Januszyk, Krzysztof Januszyk, Iwona Adwent, Dariusz Dąbruś, Przemysław Kieszkowski, Kamil Kiełbasiński, Agnieszka Kuś-Kierach and Dariusz Boroń

Volume 20, Issue 9, 2019

Page: [727 - 732] Pages: 6

DOI: 10.2174/1389201020666190619145655

open access plus

Abstract

Background: In the course of neoplastic diseases, a reduction in SEMA3F expression is observed, which translates into an increase in the proliferative and proangiogenic potential of cells forming the tumor and the surrounding microenvironment.

Objective: The aim of this study was to determine the changes in SEMA3F level in endometrial cancer depending on its grade.

Methods: The study material consisted of tissue samples: 15 without neoplastic changes (control group) and 45 with endometrial cancer (G1, 17; G2, 15; G3, 13; study group). SEMA3F expression was assessed using the immune-histochemical method.

Results: The expression of SEMA3F was observed in the control group (Me = 159.38) and in the study group (G1, Me = 121.32; G2, Me = 0; G3, Me = 130.37). Differences between each grade and control and between individual grades were statistically significant. There were no significant correlations between SEMA3F expression and weight and Body Mass Index (BMI). The reduced SEMA3F expression in tumor tissue compared to healthy tissue indicates that this protein plays key roles in proliferation and angiogenesis.

Conclusion: We found that depending on the severity of the disease, cancer adopts different survival strategies, where SEMA3F plays an important role. As a molecular marker, SEMA3F is not sensitive to weight and BMI.

Keywords: SEMA3F, endometrial cancer, angiogenesis, epigenetics, supplementary molecular marker, proliferation.

Graphical Abstract
[1]
Nakamura, F.; Kalb, R.G.; Strittmatter, S.M. Molecular basis of semaphorin-mediated axon guidance. J. Neurobiol., 2000, 44(2), 219-229.
[http://dx.doi.org/10.1002/1097-4695(200008)44:2<219:AID-NEU11>3.0.CO;2-W] [PMID: 10934324]
[2]
Goodman, C.S.; Kolodkin, A.L.; Luo, Y.; Püschel, A.W.; Raper, J.A. Unified nomenclature for the semaphorins/collapsins. Cell, 1999, 97(5), 551-552.
[http://dx.doi.org/10.1016/S0092-8674(00)80766-7] [PMID: 10367884]
[3]
Beuten, J.; Garcia, D.; Brand, T.C.; He, X.; Balic, I.; Canby-Hagino, E.; Troyer, D.A.; Baillargeon, J.; Hernandez, J.; Thompson, I.M.; Leach, R.J.; Naylor, S.L. Semaphorin 3B and 3F single nucleotide polymorphisms are associated with prostate cancer risk and poor prognosis. J. Urol., 2009, 182(4), 1614-1620.
[http://dx.doi.org/10.1016/j.juro.2009.06.016] [PMID: 19683737]
[4]
Xiang, R.H.; Hensel, C.H.; Garcia, D.K.; Carlson, H.C.; Kok, K.; Daly, M.C.; Kerbacher, K.; van den Berg, A.; Veldhuis, P.; Buys, C.H.; Naylor, S.L. Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics, 1996, 32(1), 39-48.
[http://dx.doi.org/10.1006/geno.1996.0074] [PMID: 8786119]
[5]
Xiang, R.; Davalos, A.R.; Hensel, C.H.; Zhou, X.J.; Tse, C.; Naylor, S.L. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res., 2002, 62(9), 2637-2643.
[PMID: 11980661]
[6]
Kusy, S.; Nasarre, P.; Chan, D.; Potiron, V.; Meyronet, D.; Gemmill, R.M.; Constantin, B.; Drabkin, H.A.; Roche, J. Selective suppression of in vivo tumorigenicity by semaphorin SEMA3F in lung cancer cells. Neoplasia, 2005, 7(5), 457-465.
[http://dx.doi.org/10.1593/neo.04721] [PMID: 15967098]
[7]
Liu, Y.; Li, R.; Yin, K.; Ren, G.; Zhang, Y. The crucial role of SEMA3F in suppressing the progression of oral squamous cell carcinoma. Cell. Mol. Biol. Lett., 2017, 22, 32.
[http://dx.doi.org/10.1186/s11658-017-0064-y] [PMID: 29299034]
[8]
Sun, Y.; Liegl, R.; Gong, Y.; Bühler, A.; Cakir, B.; Meng, S.S.; Burnim, S.B.; Liu, C.H.; Reuer, T.; Zhang, P.; Walz, J.M.; Ludwig, F.; Lange, C.; Agostini, H.; Böhringer, D.; Schlunck, G.; Smith, L.E.H.; Stahl, A. Sema3f protects against subretinal neovascularization in vivo. EBioMedicine, 2017, 18, 281-287.
[http://dx.doi.org/10.1016/j.ebiom.2017.03.026] [PMID: 28373097]
[9]
Kusy, S.; Potiron, V.; Zeng, C.; Franklin, W.; Brambilla, E.; Minna, J.; Drabkin, H.A.; Roche, J. Promoter characterization of Semaphorin SEMA3F, a tumor suppressor gene. Biochim. Biophys. Acta, 2005, 1730(1), 66-76.
[http://dx.doi.org/10.1016/j.bbaexp.2005.05.008] [PMID: 16005989]
[10]
Zhou, Z.H.; Rao, J.; Yang, J.; Wu, F.; Tan, J.; Xu, S.L.; Ding, Y.; Zhan, N.; Hu, X.G.; Cui, Y.H.; Zhang, X.; Dong, W.; Liu, X.D.; Bian, X.W. SEMA3F prevents metastasis of colorectal cancer by PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. J. Pathol., 2015, 236(4), 467-478.
[http://dx.doi.org/10.1002/path.4541] [PMID: 25866254]
[11]
Rao, J.; Zhou, Z.H.; Yang, J.; Shi, Y.; Xu, S.L.; Wang, B.; Ping, Y.F.; Chen, L.; Cui, Y.H.; Zhang, X.; Wu, F.; Bian, X.W. Semaphorin-3F suppresses the stemness of colorectal cancer cells by inactivating Rac1. Cancer Lett., 2015, 358(1), 76-84.
[http://dx.doi.org/10.1016/j.canlet.2014.12.040] [PMID: 25529012]
[12]
Kigel, B.; Varshavsky, A.; Kessler, O.; Neufeld, G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. PLoS One, 2008, 3(9), e3287.
[http://dx.doi.org/10.1371/journal.pone.0003287] [PMID: 18818766]
[13]
Futamura, M.; Kamino, H.; Miyamoto, Y.; Kitamura, N.; Nakamura, Y.; Ohnishi, S.; Masuda, Y.; Arakawa, H. Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Res., 2007, 67(4), 1451-1460.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2485] [PMID: 17308083]
[14]
Nasarre, P.; Kusy, S.; Constantin, B.; Castellani, V.; Drabkin, H.A.; Bagnard, D.; Roche, J. Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia, 2005, 7(2), 180-189.
[http://dx.doi.org/10.1593/neo.04481] [PMID: 15802023]
[15]
Wu, F.; Zhou, Q.; Yang, J.; Duan, G.J.; Ou, J.J.; Zhang, R.; Pan, F.; Peng, Q.P.; Tan, H.; Ping, Y.F.; Cui, Y.H.; Qian, C.; Yan, X.C.; Bian, X.W. Endogenous axon guiding chemorepulsant semaphorin-3F inhibits the growth and metastasis of colorectal carcinoma. Clin. Cancer Res., 2011, 17(9), 2702-2711.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0839] [PMID: 21349996]
[16]
Shimizu, A.; Mammoto, A.; Italiano, J.E., Jr; Pravda, E.; Dudley, A.C.; Ingber, D.E.; Klagsbrun, M. ABL2/ARG tyrosine kinase mediates SEMA3F-induced RhoA inactivation and cytoskeleton collapse in human glioma cells. J. Biol. Chem., 2008, 283(40), 27230-27238.
[http://dx.doi.org/10.1074/jbc.M804520200] [PMID: 18660502]
[17]
Sakurai, A.; Doçi, C.L.; Gutkind, J.S. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res., 2012, 22(1), 23-32.
[http://dx.doi.org/10.1038/cr.2011.198] [PMID: 22157652]
[18]
Zhou, X.; Ma, L.; Li, J.; Gu, J.; Shi, Q.; Yu, R. Effects of SEMA3G on migration and invasion of glioma cells. Oncol. Rep., 2012, 28(1), 269-275.
[http://dx.doi.org/10.3892/or.2012.1796] [PMID: 22562223]
[19]
Gaur, P.; Bielenberg, D.R.; Samuel, S.; Bose, D.; Zhou, Y.; Gray, M.J.; Dallas, N.A.; Fan, F.; Xia, L.; Lu, J.; Ellis, L.M. Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin. Cancer Res., 2009, 15(22), 6763-6770.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1810] [PMID: 19887479]
[20]
Butti, R.; Kumar, T.V.; Nimma, R.; Kundu, G.C. Impact of semaphorin expression on prognostic characteristics in breast cancer. Breast Cancer (Dove Med. Press), 2018, 10, 79-88.
[http://dx.doi.org/10.2147/BCTT.S135753] [PMID: 29910635]
[21]
Biankin, A.V.; Piantadosi, S.; Hollingsworth, S.J. Patient-centric trials for therapeutic development in precision oncology. Nature, 2015, 526(7573), 361-370.
[http://dx.doi.org/10.1038/nature15819] [PMID: 26469047]
[22]
Wcisło-Dziadecka, D.; Simka, K.; Kaźmierczak, A.; Kruszniewska-Rajs, C.; Gola, J.; Grabarek, B.; Hybiak, J.; Grillon, C.; Mazurek, U.; Łos, M.J. Psoriasis treatment changes the expression profile of selected caspases and their regulatory MicroRNAs. Cell. Physiol. Biochem., 2018, 50(2), 525-537.
[http://dx.doi.org/10.1159/000494166] [PMID: 30308514]
[23]
Helpman, L.; Kupets, R.; Covens, A.; Saad, R.S.; Khalifa, M.A.; Ismiil, N.; Ghorab, Z.; Dubé, V.; Nofech-Mozes, S. Assessment of endometrial sampling as a predictor of final surgical pathology in endometrial cancer. Br. J. Cancer, 2014, 110(3), 609-615.
[http://dx.doi.org/10.1038/bjc.2013.766] [PMID: 24366295]
[24]
Opławski, M.; Michalski, M.; Witek, A.; Michalski, B.; Zmarzły, N.; Jęda-Golonka, A.; Styblińska, M.; Gola, J.; Kasprzyk-Żyszczyńska, M.; Mazurek, U.; Plewka, A. Identification of a gene expression profile associated with the regulation of angiogenesis in endometrial cancer. Mol. Med. Rep., 2017, 16(3), 2547-2555.
[http://dx.doi.org/10.3892/mmr.2017.6868] [PMID: 28656251]
[25]
Reinartz, S.; Finkernagel, F.; Adhikary, T.; Rohnalter, V.; Schumann, T.; Schober, Y.; Nockher, W.A.; Nist, A.; Stiewe, T.; Jansen, J.M.; Wagner, U.; Müller-Brüsselbach, S.; Müller, R. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome. Genome Biol., 2016, 17(1), 108.
[http://dx.doi.org/10.1186/s13059-016-0956-6] [PMID: 27215396]
[26]
Wong, L.L.; Lee, N.G.; Amarnani, D.; Choi, C.J.; Bielenberg, D.R.; Freitag, S.K.; D’Amore, P.A.; Kim, L.A. Orbital angiogenesis and lymphangiogenesis in thyroid eye disease: An analysis of vascular growth factors with clinical correlation. Ophthalmology, 2016, 123(9), 2028-2036.
[http://dx.doi.org/10.1016/j.ophtha.2016.05.052] [PMID: 27423310]
[27]
Tan, G.; Onur, M.A. Anti-proliferative effects of gold nanoparticles functionalized with semaphorin 3F. J. Nanopart. Res., 2017, 19, 283.
[http://dx.doi.org/10.1007/s11051-017-3967-7]
[28]
Neufeld, G.; Kessler, O. The semaphorins: Versatile regulators of tumour progression and tumour angiogenesis. Nat. Rev. Cancer, 2008, 8(8), 632-645.
[http://dx.doi.org/10.1038/nrc2404] [PMID: 18580951]
[29]
Nakayama, H.; Kusumoto, C.; Nakahara, M.; Fujiwara, A.; Higashiyama, S. Semaphorin 3F and Netrin-1: The novel function as a regulator of tumor microenvironment. Front. Physiol., 2018, 9, 1662.
[http://dx.doi.org/10.3389/fphys.2018.01662] [PMID: 30532711]
[30]
Cermisoni, G.C.; Alteri, A.; Corti, L.; Rabellotti, E.; Papaleo, E.; Viganò, P.; Sanchez, A.M. Vitamin D and endometrium: A systematic review of a neglected area of research. Int. J. Mol. Sci., 2018, 19(8), E2320.
[http://dx.doi.org/10.3390/ijms19082320] [PMID: 30096760]
[31]
Zmarzły, N.; Wojdas, E.; Skubis, A.; Sikora, B.; Mazurek, U. DNA methylation: Gene expression regulation. Acta Univ. Lodz. Folia Biol. Oecol., 2016, 12, 1-10.
[http://dx.doi.org/10.1515/fobio-2016-0001] [PMID: 27641993]
[32]
Richeri, A.; Chalar, C.; Martínez, G.; Greif, G.; Bianchimano, P.; Brauer, M.M. Estrogen up-regulation of semaphorin 3F correlates with sympathetic denervation of the rat uterus. Auton. Neurosci., 2011, 164(1-2), 43-50.
[http://dx.doi.org/10.1016/j.autneu.2011.06.002] [PMID: 21724473]
[33]
Edjekouane, L.; Benhadjeba, S.; Jangal, M.; Fleury, H.; Gévry, N.; Carmona, E.; Tremblay, A. Proximal and distal regulation of the HYAL1 gene cluster by the estrogen receptor α in breast cancer cells. Oncotarget, 2016, 7(47), 77276-77290.
[http://dx.doi.org/10.18632/oncotarget.12630] [PMID: 27764788]
[34]
Sznurkowski, J.J.; Knapp, P. Bodnar. L.; Bidziński, M.; Jach, R.; Misiek, M.; Bieńkiewicz, A.; Blecharz, P.; Kojs, Z.; Kotarski, J.; Markowska, J.; Mądry, R.; Sawicki, W.; Wicherek, Ł.; Basta, A. Recommendations of the Polish Gynecological Oncology Society for the diagnosis and treatment of endometrial cancer. Curr. Gynecol. Oncol., 2017, 15, 34-44.
[http://dx.doi.org/10.15557/CGO.2017.0003]
[35]
Ferreira, G.D.; Capp, E.; Jauckus, J.; Strowitzki, T.; Germeyer, A. Expression of semaphorin class 3 is higher in the proliferative phase on the human endometrium. Arch. Gynecol. Obstet., 2018, 297(5), 1175-1179.
[http://dx.doi.org/10.1007/s00404-018-4719-3] [PMID: 29450692]
[36]
Bielenberg, D.R.; Klagsbrun, M. Targeting endothelial and tumor cells with semaphorins. Cancer Metastasis Rev., 2007, 26(3-4), 421-431.
[http://dx.doi.org/10.1007/s10555-007-9097-4] [PMID: 17768598]
[37]
Scheerer, C.; Frangini, S.; Chiantera, V.; Mechsner, S. Reduced sympathetic innervation in endometriosis is associated to semaphorin 3C and 3F Expression. Mol. Neurobiol., 2017, 54(7), 5131-5141.
[http://dx.doi.org/10.1007/s12035-016-0058-1] [PMID: 27558236]
[38]
Gao, X.; Tang, C.; Shi, W.; Feng, S.; Qin, W.; Jiang, T.; Sun, Y. Semaphorin-3F functions as a tumor suppressor in colorectal cancer due to regulation by DNA methylation. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12766-12774.
[PMID: 26722466]
[39]
Nguyen, H.; Ivanova, V.S.; Kavandi, L.; Rodriguez, G.C.; Maxwell, G.L.; Syed, V. Progesterone and 1,25-dihydroxyvitamin D3 inhibit endometrial cancer cell growth by upregulating semaphorin 3B and semaphorin 3F. Mol. Cancer Res., 2011, 9(11), 1479-1492.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0213] [PMID: 21933904]
[40]
Tang, M.W.; Malvar Fernández, B.; Newsom, S.P.; van Buul, J.D.; Radstake, T.R.D.J.; Baeten, D.L.; Tak, P.P.; Reedquist, K.A.; García, S. Class 3 semaphorins modulate the invasive capacity of rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology, (Oxford), 2018, 57(5), 909-920.
[http://dx.doi.org/10.1093/rheumatology/kex511] [PMID: 29471421]
[41]
van den Berg, M.M.; Winkels, R.M.; de Kruif, J.T.; van Laarhoven, H.W.; Visser, M.; de Vries, J.H.; de Vries, Y.C.; Kampman, E. Weight change during chemotherapy in breast cancer patients: A meta-analysis. BMC Cancer, 2017, 17(1), 259.
[http://dx.doi.org/10.1186/s12885-017-3242-4] [PMID: 28403873]
[42]
Kim, H.; Lee, J.M.; Lee, G.; Bhin, J.; Oh, S.K.; Kim, K.; Pyo, K.E.; Lee, J.S.; Yim, H.Y.; Kim, K.I.; Hwang, D.; Chung, J.; Baek, S.H. DNA damage-induced RORα is crucial for p53 stabilization and increased apoptosis. Mol. Cell, 2011, 44, 797-810.
[http://dx.doi.org/10.1016/j.molcel.2011.09.023]

© 2024 Bentham Science Publishers | Privacy Policy