Exploring Molecular Docking Studies of Alanine Racemase Inhibitors from Elettaria cardamomum

Author(s): Rosy Kumari, Ratish Chandra Mishra, Shivani Yadav, Jaya Parkash Yadav*.

Journal Name: Current Enzyme Inhibition

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Enterococcus faecalis has attracted much attention in recent times due to its increased virulence in hospital-acquired infections. Cardamom which is an exotic spice in food items can be proposed for its antimicrobial potential. In the present study, alanine racemase (AlaR) of the bacteria was considered as inhibitors’ target due to its crucial role in cell wall synthesis.

Methods: GC-MS analysis of Cardamom extract was performed and the identified phytochemicals were docked against AlaR using AutoDock 4.0. Top score ligands were further subjected to Absorption, Distribution, Metabolism, Excretion (ADME) analysis.

Results & Conclusion: Molecular docking studies reveal that among 85 phytoligands, ricinoleic acid, bombykol, 1,8- cineole, heptanoic acid, and linalool showed significant interaction to the enzyme with an energy of -7.81, -7.57, -7.03, -7.02 and -7 kcal/mol, respectively, as compared to its substrate (ΔG Alanine: -5.03 kcal/mol). Among all the five lead compounds, 1,8- cineole, heptanoic acid, and linalool exhibited high bioactivity score on druglikeliness. This enabled us to conclude that the compounds 1,8- cineole, heptanoic acid and linalool would be useful antibacterial agents against E. faecalis infections.

Keywords: Alanine racemase, druglikeliness, E. faecalis, molecular docking, phytoligands, ricinoleic acid.

[1]
Lebreton, F.; Manson, A.L.; Saavedra, J.T.; Straub, T.J.; Earl, A.M.; Gilmore, M.S. Tracing the Enterococci from Paleozoic origins to the hospital. Cell, 2017, 169(5), 849-861.e13.
[http://dx.doi.org/10.1016/j.cell.2017.04.027] [PMID: 28502769]
[2]
Benbelaïd, F.; Khadir, A.; Abdoune, M.A.; Bendahou, M.; Muselli, A.; Costa, J. Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state. Asian Pac. J. Trop. Biomed., 2014, 4(6), 463-472.
[http://dx.doi.org/10.12980/APJTB.4.2014C1203] [PMID: 25182948]
[3]
Beganovic, M.; Luther, M.K.; Rice, L.B.; Arias, C.A.; Rybak, M.J.; LaPlante, K.L. A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clin. Infect. Dis., 2018, 67(2), 303-309.
[http://dx.doi.org/10.1093/cid/ciy064] [PMID: 29390132]
[4]
Shokoohizadeh, L.; Ekrami, A.; Labibzadeh, M.; Ali, L.; Alavi, S.M. Antimicrobial resistance patterns and virulence factors of enterococci isolates in hospitalized burn patients. BMC Res. Notes, 2018, 11(1), 1.
[http://dx.doi.org/10.1186/s13104-017-3088-5] [PMID: 29291749]
[5]
Orsi, G.B.; Ciorba, V. Vancomycin resistant enterococci healthcare associated infections. Ann. Ig., 2013, 25(6), 485-492.
[PMID: 24284534]
[6]
Wang, Q.Q.; Zhang, C.F.; Chu, C.H.; Zhu, X.F. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int. J. Oral Sci., 2012, 4(1), 19-23.
[http://dx.doi.org/10.1038/ijos.2012.17] [PMID: 22422085]
[7]
Kumar, H. An in vitro evaluation of the antimicrobial efficacy of Curcuma longa, Tachyspermum ammi, chlorhexidine gluconate, and calcium hydroxide on Enterococcus faecalis. J. Conserv. Dent., 2013, 16(2), 144-147.
[http://dx.doi.org/10.4103/0972-0707.108197] [PMID: 23716967]
[8]
Lee, L.W.; Lee, Y.L.; Hsiao, S.H.; Lin, H.P. Bacteria in the apical root canals of teeth with apical periodontitis. J. Formos. Med. Assoc., 2017, 116(6), 448-456.
[http://dx.doi.org/10.1016/j.jfma.2016.08.010] [PMID: 27745799]
[9]
Arshadi, M.; Mahmoudi, M.; Motahar, M.S.; Soltani, S.; Pourmand, M.R. Virulence determinants and antimicrobial resistance patterns of vancomycin-resistant Enterococcus faecium isolated from different sources in southwest Iran. Iran. J. Public Health, 2018, 201842(2), 264-272.
[10]
Muller, C.; Massier, S.; Le Breton, Y.; Rincé, A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol. Microbiol., 2018, 107(3), 416-427.
[http://dx.doi.org/10.1111/mmi.13891] [PMID: 29205552]
[11]
Azam, M.A.; Jayaram, U. Inhibitors of alanine racemase enzyme: a review. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 517-526.
[http://dx.doi.org/10.3109/14756366.2015.1050010] [PMID: 26024289]
[12]
Meziane-Cherif, D.; Stogios, P.J.; Evdokimova, E.; Egorova, O.; Savchenko, A.; Courvalin, P. Structural and functional adaptation of vancomycin resistance VanT serine racemases. MBio, 2015, 6(4), e00806-e00815.
[http://dx.doi.org/10.1128/mBio.00806-15] [PMID: 26265719]
[13]
Anthony, K.G.; Strych, U.; Yeung, K.R.; Shoen, C.S.; Perez, O.; Krause, K.L.; Cynamon, M.H.; Aristoff, P.A.; Koski, R.A. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One, 2011, 6(5)e20374
[http://dx.doi.org/10.1371/journal.pone.0020374] [PMID: 21637807]
[14]
Wang, Y.; Yang, C.; Xue, W.; Zhang, T.; Liu, X.; Ju, J.; Zhao, B.; Liu, D. Selection and characterization of alanine racemase inhibitors against Aeromonas hydrophila. BMC Microbiol., 2017, 17(1), 122.
[http://dx.doi.org/10.1186/s12866-017-1010-x] [PMID: 28545531]
[15]
Asojo, O.A.; Nelson, S.K.; Mootien, S.; Lee, Y.; Rezende, W.C.; Hyman, D.A.; Matsumoto, M.M.; Reiling, S.; Kelleher, A.; Ledizet, M.; Koski, R.A.; Anthony, K.G. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 7), 1922-1933.
[http://dx.doi.org/10.1107/S1399004714009419] [PMID: 25004969]
[16]
Ghosh, S.; Bhattacharjee, P.; Das, S. 1,8-Cineol-rich cardamom seed (Elettaria cardamomum) extracts using green technologies and conventional extractions: process analysis, phytochemical characterization, and food application. Sep. Sci. Technol., 2015, 50(13), 1974-1985.
[17]
Asakawa, Y.; Ludwiczuk, A.; Sakurai, K.; Tomiyama, K.; Kawakami, Y.; Yaguchi, Y. Comparative study on volatile compounds of Alpinia japonica and Elettaria cardamomum. J. Oleo Sci., 2017, 66(8), 871-876.
[http://dx.doi.org/10.5650/jos.ess17048] [PMID: 28701653]
[18]
Schueuermann, C.; Steel, C.C.; Blackman, J.W.; Clark, A.C.; Schwarz, L.J.; Moraga, J.; Collado, I.G.; Schmidtke, L.M.A. A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chem., 2019, 270, 375-384.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.057] [PMID: 30174061]
[19]
Froufe, H.J.; Abreu, R.M.; Ferreira, I.C. Using molecular docking to investigate the anti-breast cancer activity of low molecular weight compounds present on wild mushrooms. SAR QSAR Environ. Res., 2011, 22(3), 315-328.
[http://dx.doi.org/10.1080/1062936X.2011.569897] [PMID: 21598196]
[20]
Narad, P.R.; Jain, A.S.; Sengupta, A.B. Docking studies for tuberculosis taking alanine racemase as a receptor and a novel plant source quercetin as a potential drug source. Int. J. Pharma Bio Sci., 2014, 5(3), 31-39.
[21]
Davis, E.; Scaletti-Hutchinson, E.; Opel-Reading, H.; Nakatani, Y.; Krause, K.L. The structure of alanine racemase from Acinetobacter baumannii. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(Pt 9), 1199-1205.
[http://dx.doi.org/10.1107/S2053230X14017725] [PMID: 25195891]
[22]
Kumari, R.; Mishra, R.C.; Yadav, A.; Yadav, J.P. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GC-MS analysis of Acacia nilotica extract. Indian J. Tradit. Knowl., 2019, 18(1), 162-168.
[23]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[24]
Uddin, M.A.; Shahinuzzaman, M.; Rana, M.S.; Yaakob, Z. Study of chemical composition and medicinal properties of volatile oil from clove buds (Eugenia caryophyllus). Int. J. Pharm. Sci. Res., 2017, 8(2), 895.
[25]
Saikarthik, J.; Ilango, S.; Vijayakumar, J.; Vijayaraghavan, R. Phytochemical analysis of methanolic extract of seeds of Mucuna pruriens by gas chromatography mass spectrometry. Int. J. Pharm. Sci. Res., 2017, 8(7), 2916-2921.
[26]
Yu, X.; Zhao, M.; Liu, F.; Zeng, S.; Hu, J. Identification of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Res. Int., 2013, 51(1), 397-403.
[http://dx.doi.org/10.1016/j.foodres.2012.12.044]
[27]
Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: a review of its biological properties. Open Chem., 2018, 16(1), 349-361.
[http://dx.doi.org/10.1515/chem-2018-0040]
[28]
Kim, K.Y.; Seo, H.J.; Min, S.S.; Park, M.; Seol, G.H. The effect of 1,8-cineole inhalation on preoperative anxiety: a randomized clinical trial. Evid. Based Complement. Alternat. Med., 2014.2014820126
[http://dx.doi.org/10.1155/2014/820126] [PMID: 25028591]
[29]
Brown, S.K.; Garver, W.S.; Orlando, R.A. 1, 8-Cineole: an underappreciated anti-inflammatory therapeutic. J. Biomol. Res. Ther., 2017, 6(1)1000154
[http://dx.doi.org/10.4172/2167-7956.1000154]
[30]
Eckhard, L.H.; Sol, A.; Abtew, E.; Shai, Y.; Domb, A.J.; Bachrach, G.; Beyth, N. Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis. PLoS One, 2014, 9(10)e109413
[http://dx.doi.org/10.1371/journal.pone.0109413] [PMID: 25279943]
[31]
Jain, P.K.; Rijhwani, S. Comparative gc-ms analysis of Cyamopsis tetragonoloba fruit extracts. Int. J. Pharm. Sci. Res., 2018, 9(10), 4236-4242.
[32]
Şimşek, M.; Duman, R. Investigation of effect of 1, 8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacognosy Res., 2017, 9(3), 234-237.
[http://dx.doi.org/10.4103/0974-8490.210329] [PMID: 28827963]
[33]
Caldas, G.F.R.; Limeira, M.M.F.; Araújo, A.V.; Albuquerque, G.S.; Silva-Neto, J.D.; Silva, T.G.; Costa-Silva, J.H.; Menezes, I.R.; Costa, J.G.; Wanderley, A.G. Repeated-doses and reproductive toxicity studies of the monoterpene 1,8-cineole (eucalyptol) in Wistar rats. Food Chem. Toxicol., 2016, 97, 297-306.
[http://dx.doi.org/10.1016/j.fct.2016.09.020] [PMID: 27644596]
[34]
Mossoba, M.M.; McDonald, R.E.; Chen, J.Y.T.; Armstrong, D.J.; Page, S.W. Identification and quantitation of trans-9, trans-12-octadecadienoic acid methyl ester and related compounds in hydrogenated soybean oil and margarines by capillary gas chromatography/matrix isolation/Fourier transform infrared spectroscopy. J. Agric. Food Chem., 1990, 38(1), 86-92.
[http://dx.doi.org/10.1021/jf00091a016]
[35]
Borges, K.; Sonnewald, U. Triheptanoin--a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res., 2012, 100(3), 239-244.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.05.023] [PMID: 21855298]
[36]
Hadera, M.G.; Smeland, O.B.; McDonald, T.S.; Tan, K.N.; Sonnewald, U.; Borges, K. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J. Neurochem., 2014, 129(1), 107-119.
[http://dx.doi.org/10.1111/jnc.12610] [PMID: 24236946]
[37]
Aprotosoaie, A.C.; Hăncianu, M.; Costache, I.I.; Miron, A. Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragrance J., 2014, 29(4), 193-219.
[http://dx.doi.org/10.1002/ffj.3197]
[38]
Fisher, K.; Phillips, C. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol., 2009, 106(4), 1343-1349.
[http://dx.doi.org/10.1111/j.1365-2672.2008.04102.x] [PMID: 19187138]
[39]
Park, S.N.; Lim, Y.K.; Freire, M.O.; Cho, E.; Jin, D.; Kook, J.K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe, 2012, 18(3), 369-372.
[http://dx.doi.org/10.1016/j.anaerobe.2012.04.001] [PMID: 22537719]
[40]
Priyadarshi, A.; Lee, E.H.; Sung, M.W.; Nam, K.H.; Lee, W.H.; Kim, E.E.; Hwang, K.Y. Structural insights into the alanine racemase from Enterococcus faecalis. Biochim. Biophys. Acta, 2009, 1794(7), 1030-1040.
[http://dx.doi.org/10.1016/j.bbapap.2009.03.006] [PMID: 19328247]
[41]
Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 379-393.
[http://dx.doi.org/10.1517/17425255.2014.876006] [PMID: 24392841]
[42]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[43]
Arifa, B.; Shaheen, B.; Prasad, K.V.S.R.G.; Bharathi, K. In silico studies on functionalized azaglycine derivatives containing 2, 4-thiazolidinedione scaffold on multiple targets. Int. J. Pharm. Pharm. Sci., 2017, 9, 209-215.
[http://dx.doi.org/10.22159/ijpps.2017v9i8.19835]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2019
Page: [91 - 102]
Pages: 12
DOI: 10.2174/1573408015666190619120643

Article Metrics

PDF: 13
HTML: 2