Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Hot-melt Preparation of a Non-biodegradable Peptide Implant: A Proof of Principle

Author(s): Matthias D’Hondt, Frederick Verbeke, Pieter Wuytens, Andre Skirtach, Bart De Spiegeleer and Evelien Wynendaele*

Volume 26, Issue 9, 2019

Page: [691 - 701] Pages: 11

DOI: 10.2174/0929866526666190619113724

Price: $65

Abstract

Background: Both biodegradable and non-biodegradable peptide-loaded implants are already developed for the long-term treatment of patients, thereby reducing the frequency of drug administration. To further improve peptide formulation, extending the scope of implant-based drug delivery systems towards other polymers and processing techniques is highly interesting.

Objective: In this study, as a proof-of-principle, the feasibility of hot-melt processing of a peptide active pharmaceutical ingredient was assessed by developing a non-biodegradable poly(ethylenevinyl acetate) (33% VA) implant loaded with 20% (w/w) buserelin acetate.

Methods: Cross-sectional implant characterization was performed by Raman microscopy. The stability of buserelin acetate in the polymeric matrix was evaluated for 3 months under ICH stability conditions and the quantity as well as the degradation products analyzed using LC-UV methods. An in vitro dissolution study was performed as well and buserelin acetate and its degradants analyzed using the same chromatographic methods.

Results: No significant quantities of buserelin acetate-related degradation products were formed during the hot-melt preparation as well as during the stability study. Together with the consistent buserelin acetate assay values over time, chemical peptide stability was thus demonstrated. The in vitro buserelin acetate release from the implant was found to be diffusion-controlled after an initial burst release, with stable release profiles in the stability study, demonstrating the functional stability of the peptide implant.

Conclusion: These results indicate the feasibility of preparing non-biodegradable peptide-loaded implants using the hot-melt production method and may act as a proof of principle concept for further innovation in peptide medicinal formulations.

Keywords: Buserelin acetate, hot-melt process, poly(ethylene-vinyl acetate) polymeric formulation, analytical characterization, dissolution, stability.

Graphical Abstract
[1]
Magon, N. Gonadotropin releasing hormone agonists: Expanding vistas. Indian J. Endocrinol. Metab., 2011, 15(4), 261-267.
[http://dx.doi.org/10.4103/2230-8210.85575] [PMID: 22028996]
[2]
Schally, A.V.; Arimura, A.; Kastin, A.J.; Matsuo, H.; Baba, Y.; Redding, T.W.; Nair, R.M.; Debeljuk, L.; White, W.F. Gonadotropin-releasing hormone: One polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science, 1971, 173(4001), 1036-1038.
[http://dx.doi.org/10.1126/science.173.4001.1036] [PMID: 4938639]
[3]
Huhtaniemi, I.; Venho, P.; Jacobi, G.; Rannikko, S. Response of circulating gonadotropin levels to GnRH agonist treatment in prostatic cancer. J. Androl., 1991, 12(1), 46-53.
[PMID: 1901309]
[4]
Klijn, J.G.M.; de Jong, F.H. Treatment with a luteinising-hormone-releasing-hormone analogue (buserelin) in premenopausal patients with metastatic breast cancer. Lancet, 1982, 1(8283), 1213-1216.
[http://dx.doi.org/10.1016/S0140-6736(82)92339-X] [PMID: 6122975]
[5]
Klijn, J.G.M.; Blamey, R.W.; Boccardo, F.; Tominaga, T.; Duchateau, L.; Sylvester, R. Combined tamoxifen and luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist alone in premenopausal advanced breast cancer: a meta-analysis of four randomized trials. J. Clin. Oncol., 2001, 19(2), 343-353.
[http://dx.doi.org/10.1200/JCO.2001.19.2.343] [PMID: 11208825]
[6]
Nicholson, R.I.; Walker, K.J.; Turkes, A.; Turkes, A.O.; Dyas, J.; Blamey, R.W.; Campbell, F.C.; Robinson, M.R.G.; Griffiths, K. Therapeutic significance and the mechanism of action of the LH-RH agonist ICI 118630 in breast and prostate cancer. J. Steroid Biochem., 1984, 20(1), 129-135.
[http://dx.doi.org/10.1016/0022-4731(84)90199-7] [PMID: 6231416]
[7]
Seidenfeld, J.; Samson, D.J.; Hasselblad, V.; Aronson, N.; Albertsen, P.C.; Bennett, C.L.; Wilt, T.J. Single-therapy androgen suppression in men with advanced prostate cancer: A systematic review and meta-analysis. Ann. Intern. Med., 2000, 132(7), 566-577.
[http://dx.doi.org/10.7326/0003-4819-132-7-200004040-00009] [PMID: 10744594]
[8]
Harrison, G.S.; Wierman, M.E.; Nett, T.M.; Glode, L.M. Gonadotropin-releasing hormone and its receptor in normal and malignant cells. Endocr. Relat. Cancer, 2004, 11(4), 725-748.
[http://dx.doi.org/10.1677/erc.1.00777] [PMID: 15613448]
[9]
Hazum, E.; Conn, P.M. Molecular mechanism of gonadotropin releasing hormone (GnRH) action. I. The GnRH receptor. Endocr. Rev., 1988, 9(4), 379-386.
[http://dx.doi.org/10.1210/edrv-9-4-379] [PMID: 2851440]
[10]
Millar, R.P. GnRHs and GnRH receptors. Anim. Reprod. Sci., 2005, 88(1-2), 5-28.
[http://dx.doi.org/10.1016/j.anireprosci.2005.05.032] [PMID: 16140177]
[11]
Hoellen, F.; Griesinger, G.; Bohlmann, M.K. Therapeutic drugs in the treatment of symptomatic uterine fibroids. Expert Opin. Pharmacother., 2013, 14(15), 2079-2085.
[http://dx.doi.org/10.1517/14656566.2013.825607] [PMID: 23914973]
[12]
Shaw, R.W. Treatment of endometriosis. Lancet, 1992, 340(8830), 1267-1271.
[http://dx.doi.org/10.1016/0140-6736(92)92960-N] [PMID: 1359330]
[13]
Waller, K.G.; Shaw, R.W. Gonadotropin-releasing hormone analogues for the treatment of endometriosis: long-term follow-up. Fertil. Steril., 1993, 59(3), 511-515.
[http://dx.doi.org/10.1016/S0015-0282(16)55791-4] [PMID: 8458449]
[14]
Hadziselimović, F.; Herzog, B. Treatment with a luteinizing hormone-releasing hormone analogue after successful orchiopexy markedly improves the chance of fertility later in life. J. Urol., 1997, 158(3 Pt 2), 1193-1195.
[http://dx.doi.org/10.1016/S0022-5347(01)64422-7] [PMID: 9258170]
[15]
Periti, P.; Mazzei, T.; Mini, E. Clinical pharmacokinetics of depot leuprorelin. Clin. Pharmacokinet., 2002, 41(7), 485-504.
[http://dx.doi.org/10.2165/00003088-200241070-00003] [PMID: 12083977]
[16]
Duncan, R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs, 1992, 3(3), 175-210.
[http://dx.doi.org/10.1097/00001813-199206000-00001] [PMID: 1525399]
[17]
Shore, N. Introducing Vantas: The first once-yearly luteinizing hormone-release hormone agonist. Eur. Urol. Suppl., 2010, 9, 701-705.
[http://dx.doi.org/10.1016/j.eursup.2010.08.004]
[18]
D’Hondt, M.; Fedorova, M.; Peng, C-Y.; Gevaert, B.; Taevernier, L.; Hoffmann, R.; De Spiegeleer, B. Dry heat forced degradation of buserelin peptide: Kinetics and degradant profiling. Int. J. Pharm., 2014, 467(1-2), 48-49.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.043] [PMID: 24657556]
[19]
Almeida, A.; Possemiers, S.; Boone, M.N.; De Beer, T.; Quinten, T.; Van Hoorebeke, L.; Remon, J.P.; Vervaet, C. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur. J. Pharm. Biopharm., 2011, 77(2), 297-305.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.004] [PMID: 21168487]
[20]
van Laarhoven, J.A.H.; Kruft, M.A.B.; Vromans, H. In vitro release properties of etonogestrel and ethinyl estradiol from a contraceptive vaginal ring. Int. J. Pharm., 2002, 232(1-2), 163-173.
[http://dx.doi.org/10.1016/S0378-5173(01)00900-0] [PMID: 11790500]
[21]
Engelsman, A.F.; Krom, B.P.; Busscher, H.J.; van Dam, G.M.; Ploeg, R.J.; van der Mei, H.C. Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater., 2009, 5(6), 1905-1910.
[http://dx.doi.org/10.1016/j.actbio.2009.01.041] [PMID: 19251498]
[22]
Zhang, C.; Easteal, A.J.; Edmonds, N.R.; Liang, G. In vitro and mechanism study of poly(ethylene-co-vinyl acetate)-based implant for sustained release of vitamine B12. Macromol. Res., 2010, 18, 653-659.
[http://dx.doi.org/10.1007/s13233-010-0711-x]
[23]
de Queiroz, A.A.A.; Abraham, G.A.; Higa, O.Z. Controlled release of 5-fluorouridine from radiation-crosslinked poly(ethylene-co-vinyl acetate) films. Acta Biomater., 2006, 2(6), 641-650.
[http://dx.doi.org/10.1016/j.actbio.2006.05.010] [PMID: 16876492]
[24]
Tallury, P.; Alimohammadi, N.; Kalachandra, S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent. Mater., 2007, 23(4), 404-409.
[http://dx.doi.org/10.1016/j.dental.2006.02.011] [PMID: 16556460]
[25]
Kalachandra, S.; Dongming, L.; Offenbacher, S. Controlled drug release for oral condition by a novel device based on ethylene vinyl acetate (EVA) copolymer. J. Mater. Sci. Mater. Med., 2002, 13(1), 53-58.
[http://dx.doi.org/10.1023/A:1013634518797] [PMID: 15348205]
[26]
Guo, Q.H.; Guo, S.R.; Wang, Z.M. Estimation of 5-fluorouracil-loaded ethylene-vinyl acetate stent coating based on percolation thresholds. Int. J. Pharm., 2007, 333(1-2), 95-102.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.011] [PMID: 17110064]
[27]
Schneider, C.; Langer, R.; Loveday, D.; Hair, D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J. Control. Release, 2017, 262, 284-295.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.004] [PMID: 28789964]
[28]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[29]
Celanese. Ateva® 3325A EVA copolymer. [August 2, 2012]; Available from: http://www.celanese.com/-/media/EVA%20Polymers/Files/Technical%20Data%20Sheets/Ateva_EVA_3325A.pdf.
[30]
James, V.H.T.; Pasqualini, J.R. Hormonal steroids: Proceedings of the sixth international congress on hormonal steroids 1983. J. Steroid Biochem., 1983, 19, 715-1038.
[31]
European Directorate for the Quality of Medicines & Healthcare Chromatographic separation techniques, 07/2016:20246. In: European Pharmacopoeia, 9th ed., EDQM: Strassbourg, France, 2014. [32] International Conference on Harmonisation (ICH). Guidance for industry Q1A (R2) stability testing of new drug substances and products,; , 2016.
[32]
International Conference on Harmonisation (ICH). Guidance for industry Q1A (R2) stability testing of new drug substances and products, 2003.
[33]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[34]
Almeida, A.; Brabant, L.; Siepmann, F.; De Beer, T.; Bouquet, W.; Van Hoorebeke, L.; Siepmann, J.; Remon, J.P.; Vervaet, C. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. Eur. J. Pharm. Biopharm., 2012, 82(3), 526-533.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.008] [PMID: 22986082]
[35]
Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 1961, 50, 874-875.
[http://dx.doi.org/10.1002/jps.2600501018] [PMID: 13907269]
[36]
Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52, 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[37]
Korsmeyer, R.W.; Gurny, R.; Doelker, E.M.; Buri, P.; Peppas, N.A. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, 15, 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[38]
Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 1985, 60(4), 110-111.
[PMID: 4011621]
[39]
Cockshott, I.D. Clinical pharmacokinetics of goserelin. Clin. Pharmacokinet., 2000, 39(1), 27-48.
[http://dx.doi.org/10.2165/00003088-200039010-00003] [PMID: 10926349]
[40]
Van den Mooter, G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today. Technol., 2012, 9(2), e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.10.002] [PMID: 24064267]
[41]
D’Hondt, M.; Demaré, W.; Van Dorpe, S.; Wynendaele, E.; Burvenich, C.; Peremans, K.; De Spiegeleer, B. Dry heat stress stability evaluation of casein peptide mixture. Food Chem., 2011, 128(1), 114-122.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.004] [PMID: 25214337]
[42]
Jeong, B.; Bae, Y.H.; Kim, S.W. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J. Control. Release, 2000, 63(1-2), 155-163.
[http://dx.doi.org/10.1016/S0168-3659(99)00194-7] [PMID: 10640589]
[43]
Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release, 2001, 73(2-3), 121-136.
[http://dx.doi.org/10.1016/S0168-3659(01)00248-6] [PMID: 11516493]
[44]
Tallury, P.; Alimohammadi, N.; Kalachandra, S. Poly(ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: Effect of drug combination, copolymer composition and coating on the drug release rate. Dent. Mater., 2007, 23(4), 404-409.
[http://dx.doi.org/10.1016/j.dental.2006.02.011] [PMID: 16556460]
[45]
D’Hondt, M.; Wynendaele, E.; Vandercruyssen, K.; Bauters, T.; Vandenbroucke, J.; Mullens, S.; Vervaet, C.; Remon, J.P.; De Spiegeleer, B. Investigation of active pharmaceutical ingredient loss in pharmaceutical compounding of capsules. J. Pharm. Biomed. Anal., 2014, 96, 68-76.
[http://dx.doi.org/10.1016/j.jpba.2014.03.020] [PMID: 24727282]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy