Dietary Carotenoids in Managing Metabolic Syndrome and Role of PPARs in the Process

Author(s): Raghunandan Purohith, Nagendra P.M. Nagalingaswamy, Nanjunda S. Shivananju*

Journal Name: Current Nutrition & Food Science

Volume 16 , Issue 6 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a major predisposing factor in the development of metabolic syndrome, and dietary intervention is necessary for both prevention and management. The bioactive constituents of food play a key role in this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have beneficial effects in preventing and managing metabolic syndrome. There exists a well-established relationship between oxidative stress and major pathological conditions such as inflammation, metabolic syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of these complications. The mechanism of action and targets of dietary antioxidants as well as their effects on related pathways are being extensively studied and elucidated in recent times. This review attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith an emphasis on molecular mechanism-in the light of recent advances.

Keywords: Antioxidants, carotenoids, dyslipidemia, metabolic syndrome, oxidative stress, peroxisome proliferator activated receptors.

[1]
Alberti K, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome. Circulation 2009; 120(16): 1640-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644]
[2]
World Health Organization. Global status report on non communicable diseases 2014 Available from: http://www.who.int/nmh/ publications/ncd-status-report-2014/en/
[3]
Braun S, Bitton-Worms K, LeRoith D. The link between the metabolic syndrome and cancer. Int J Biol Sci 2011; 7(7): 1003-15.
[http://dx.doi.org/10.7150/ijbs.7.1003]
[4]
Mendonça FM, Sousa FR, de , et al. Metabolic syndrome and risk of cancer: Which link? Metab Clin Exp 2015; 64(2): 182-9.
[5]
Perez-Martinez P, Garcia-Quintana JM, Yubero-Serrano EM, et al. Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study ClinSciLondEngl 2010; 119(6): 251-61.
[http://dx.doi.org/10.1042/CS20100015]
[6]
Cho E, Seddon JM, Rosner B, Willett WC, Hankinson SE. Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy. Arch Ophthalmol 2004; 122(6): 883-92.
[http://dx.doi.org/10.1001/archopht.122.6.883]
[7]
Hartley L, Igbinedion E, Holmes J, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst Rev 2013; (6):
[http://dx.doi.org/10.1002/14651858.CD009874.pub2]
[8]
Wei Y-H, Lee H-C. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood) 2002; 227(9): 671-82.
[http://dx.doi.org/10.1177/153537020222700901]
[9]
Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation:. Circulation 2002; 106(10): 1211-8.
[http://dx.doi.org/10.1161/01.CIR.0000027569.76671.A8]
[10]
Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49(2): 27-9.
[http://dx.doi.org/10.1016/S0026-0495(00)80082-7]
[11]
Zhang F, Chen Y, Heiman M, DiMarchi R. Leptin: structure, Function and Biology Vitamins & Hormones USA: Academic Press 2005; pp 345-72.http://www.sciencedirect.com/science/article/pii/S0083672905710128
[http://dx.doi.org/10.1016/S0083-6729(05)71012-8]
[12]
Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38(3): 357-66.
[http://dx.doi.org/10.1002/ana.410380304]
[13]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545]
[14]
Rietjens IM, Boersma MG, de Haan L, et al. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 2002; 11(3-4): 321-33.
[http://dx.doi.org/10.1016/S1382-6689(02)00003-0]
[15]
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-PYCARD inflammasome activation interferes with insulin signaling. Nat Immunol 2011; 5: 408-15.
[http://dx.doi.org/10.1038/ni.2022]
[16]
Baker PRS, Lin Y, Schopfer FJ, et al. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 2005; 280(51): 42464-75.
[http://dx.doi.org/10.1074/jbc.M504212200]
[17]
Nitenberg A, Cosson E, Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulinDiabetes Metab 2006; 32(Spec No 2): 2S28-33
[http://dx.doi.org/10.1016/S1262-3636(06)70482-7]
[18]
Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr 2005; 135(5): 969-72.
[http://dx.doi.org/10.1093/jn/135.5.969]
[19]
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford: Oxford University Press 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[20]
Lakshminarayana R, Aruna G, Sangeetha RK, Bhaskar N, Divakar S, Baskaran V. Possible degradation/biotransformation of lutein in vitro and in vivo: isolation and structural elucidation of lutein metabolites by HPLC and LC-MS (atmospheric pressure chemical ionization). Free Radic Biol Med 2008; 45(7): 982-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.011]
[21]
Sangeetha RK. Influence of selected dietary carotenoids on retinol deficiency induced biochemical changes in tissue membranes of rats. India: University of Mysore 2011.
[22]
Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996; 20(7): 933-56.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9]
[23]
Pan M-H, Lai C-S, Ho C-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct 2010; 1(1): 15-31.
[http://dx.doi.org/10.1039/c0fo00103a]
[24]
Palmer HJ, Paulson KE. Reactive oxygen species and antioxidants in signal transduction and gene expression. Nutr Rev 1997; 55(10): 353-61.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb01561.x]
[25]
Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol 2013; 1: 22-30.
[http://dx.doi.org/10.1139/cjpp-2012-0295]
[26]
Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014; 6(9): 3777-801.
[http://dx.doi.org/10.3390/nu6093777]
[27]
Briviba K, Schnäbele K, Rechkemmer G, Bub A. Supplementation of a diet low in carotenoids with tomato or carrot juice does not affect lipid peroxidation in plasma and feces of healthy men. J Nutr 2004; 134(5): 1081-3.
[http://dx.doi.org/10.1093/jn/134.5.1081]
[28]
Kirsh VA, Hayes RB, Mayne ST, et al. Supplemental and dietary vitamin E, β-carotene, and vitamin C intakes and prostate cancer risk. J Natl Cancer Inst 2006; 98(4): 245-54.
[http://dx.doi.org/10.1093/jnci/djj050]
[29]
Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005; 26(6): 459-516.
[http://dx.doi.org/10.1016/j.mam.2005.10.001]
[30]
Shon M-Y, Kim T-H, Sung N-J. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem 2003; 82(4): 593-7.
[http://dx.doi.org/10.1016/S0308-8146(03)00015-3]
[31]
Yamaguchi M. Role of carotenoid β-cryptoxanthin in bone homeostasis. J Biomed Sci 2012; 19(1): 36.
[http://dx.doi.org/10.1186/1423-0127-19-36]
[32]
Yamaguchi M, Uchiyama S. Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: the unique anabolic effect of β-cryptoxanthin. Biol Pharm Bull 2003; 26(8): 1188-91.
[http://dx.doi.org/10.1248/bpb.26.1188]
[33]
Uchiyama S, Yamaguchi M. Oral administration of β-cryptoxanthin prevents bone loss in streptozotocin-diabetic rats in vivo. Biol Pharm Bull 2005; 28(9): 1766-9.
[http://dx.doi.org/10.1248/bpb.28.1766]
[34]
Zhao Z, Khachik F, Richie JP, Cohen LA. Lycopene uptake and tissue disposition in male and female rats. Proc Soc Exp Biol Med 1998; 218(2): 109-4.
[http://dx.doi.org/10.3181/00379727-218-44283a]
[35]
Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 2000; 163(6): 739-44.
[36]
Guo Y, Liu Y, Wang Y. Beneficial effect of lycopene on antidiabetic nephropathy through diminishing inflammatory response and oxidative stress. Food Funct 2015; 6(4): 1150-6.
[http://dx.doi.org/10.1039/C5FO00004A]
[37]
Ali MM, Agha FG. Amelioration of streptozotocin-induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Invest 2009; 69(3): 371-9.
[http://dx.doi.org/10.1080/00365510802658473]
[38]
Keller A, Ängquist L, Jacobsen R, Vaag A, Heitmann BL. A retrospective analysis of a societal experiment among the Danish population suggests that exposure to extra doses of vitamin A during fetal development may lower type 2 diabetes mellitus (T2DM) risk later in life. Br J Nutr 2017; 117(5): 731-6.
[http://dx.doi.org/10.1017/S000711451700037X]
[39]
Canas JA, Lochrie A, McGowan AG, Hossain J, Schettino C, Balagopal PB. Effects of mixed carotenoids on adipokines and abdominal adiposity in children: a pilot Study. J Clin Endocrinol Metab 2017; 102(6): 1983-90.
[http://dx.doi.org/10.1210/jc.2017-00185]
[40]
Han H, Cui W, Wang L, et al. Lutein prevents high fat diet-induced atherosclerosis in ApoE-deficient mice by inhibiting NADPH oxidase and increasing PPAR expression. Lipids 2015; 50(3): 261-73.
[http://dx.doi.org/10.1007/s11745-015-3992-1]
[41]
Qiu X, Gao D-H, Xiang X, et al. Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats. World J GastroenterolWJG 2015; 21(26): 8061-72.
[http://dx.doi.org/10.3748/wjg.v21.i26.8061]
[42]
Fatani AJ, Parmar MY, Abuohashish HM, Ahmed MM, Al-Rejaie SS. Protective effect of lutein supplementation on oxidative stress and inflammatory progression in cerebral cortex of streptozotocin induced diabetes in rats. Neurochem J 2016; 10(1): 69-76.
[http://dx.doi.org/10.1134/S1819712416010074]
[43]
Naguib YM. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 2000; 48(4): 1150-4.
[http://dx.doi.org/10.1021/jf991106k]
[44]
Yanishlieva NV, Aitzetmüller K, Raneva V. β-Carotene and lipid oxidation. Eur J Lipid Sci Technol 1998; 100(10): 444-62.
[45]
Wang SL, He LJ, He TB, Han W, Wang Q. [Effect of astaxanthin on oxidative stress of red blood cells and peroxidation damage of membrane]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015; 2: 552-6.
[46]
Ni Y, Nagashimada M, Zhuge F, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep 2015; 5: 17192.
[http://dx.doi.org/10.1038/srep17192]
[47]
Ursoniu S, Sahebkar A, Serban M-C, Banach M. Lipid profile and glucose changes after supplementation with astaxanthin: a systematic review and meta-analysis of randomized controlled trials. Arch Med Sci AMS 2015; 11(2): 253-66.
[http://dx.doi.org/10.5114/aoms.2015.50960]
[48]
Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med 2006; 18(1): 147-52.
[http://dx.doi.org/10.3892/ijmm.18.1.147]
[49]
Chang Y-H, Chen Y-L, Huang W-C, Liou C-J. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem Biophys Res Commun 2018; 495(1): 197-203.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.022]
[50]
Takahashi N, Goto T, Taimatsu A, et al. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARy activation. Biochem Biophys Res Commun 2009; 390(4): 1372-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.162]
[51]
Roehrs M, Figueiredo CG, Zanchi MM, et al. Bixin and norbixin have opposite effects on glycemia, lipidemia, and oxidative stress in streptozotocin-induced diabetic rats Int J Endocrinol 2014; Available from: https://www.hindawi.com/journals/ije/2014/839095/
[52]
Palozza P, Catalano A, Simone R, Cittadini A. Lycopene as a guardian of redox signalling. Acta Biochim Pol 2012; 59(1): Available from:.https://ojs.ptbioch.edu.pl/index.php/abp/article/view/2163
[http://dx.doi.org/10.18388/abp.2012_2163]
[53]
Cohen LA. A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med (Maywood) 2002; 227(10): 864-8.
[http://dx.doi.org/10.1177/153537020222701005]
[54]
Zaripheh S, Nara TY, Nakamura MT, Erdman JW. Dietary lycopene downregulates carotenoid 15,15′-monooxygenase and PPAR-γ in selected rat tissues. J Nutr 2006; 136(4): 932-8.
[http://dx.doi.org/10.1093/jn/136.4.932]
[55]
Lee L-C, Wei L, Huang W-C, Hsu Y-J, Chen Y-M, Huang C-C. Hypolipidemic effect of tomato juice in hamsters in high cholesterol diet-induced hyperlipidemia. Nutrients 2015; 7(12): 10525-37.
[http://dx.doi.org/10.3390/nu7125552]
[56]
Amengual J, Gouranton E, van Helden YGJ, et al. beta-carotene reduces body adiposity of mice via BCMO1. PLoS One 2011; 6(6)e20644
[http://dx.doi.org/10.1371/journal.pone.0020644]
[57]
Lobo GP, Amengual J, Li HNM, et al. Beta,beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta,beta-carotene oxygenase 1-dependent manner. J Biol Chem 2010; 285(36): 27891-9.
[http://dx.doi.org/10.1074/jbc.M110.132571]
[58]
Kowluru RA, Menon B, Gierhart DL. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Invest Ophthalmol Vis Sci 2008; 49(4): 1645-51.
[http://dx.doi.org/10.1167/iovs.07-0764]
[59]
Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res 2003; 37(11): 1169-80.
[http://dx.doi.org/10.1080/10715760310001604189]
[60]
Abdelzaher LA, Imaizumi T, Suzuki T, Tomita K, Takashina M, Hattori Y. Astaxanthin alleviates oxidative stress insults-related derangements in human vascular endothelial cells exposed to glucose fluctuations. Life Sci 2016; 150: 24-31.
[http://dx.doi.org/10.1016/j.lfs.2016.02.087]
[61]
Ikeuchi M, Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 2007; 71(4): 893-9.
[http://dx.doi.org/10.1271/bbb.60521]
[62]
Jia Y, Kim J-Y, Jun H-J, et al. The natural carotenoid astaxanthin, a PPAR-α agonist and PPAR-γ antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. Mol Nutr Food Res 2012; 56(6): 878-88.
[http://dx.doi.org/10.1002/mnfr.201100798]
[63]
Beppu F, Niwano Y, Sato E. Kohno M, Tsukui T, Hosokawa M,et al In vitro and in vivo evaluation of mutagenicity of fucoxanthin (FX) and its metabolite fucoxanthinol (FXOH). J Toxicol Sci 2009; 34(6): 693-8.
[http://dx.doi.org/10.2131/jts.34.693]
[64]
Beppu F, Hosokawa M, Niwano Y, Miyashita K. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-A(y) mice. Lipids Health Dis 2012; 11: 112.
[http://dx.doi.org/10.1186/1476-511X-11-112]
[65]
Beppu F, Hosokawa M, Yim M-J, Shinoda T, Miyashita K. Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice. Lipids 2013; 48(5): 449-55.
[http://dx.doi.org/10.1007/s11745-013-3784-4]
[66]
Hosokawa M, Miyashita T. et al Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch Biochem Biophys 2010; 504(1): 17-25.
[http://dx.doi.org/10.1016/j.abb.2010.05.031]
[67]
Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 2004; 1675(1-3): 113-9.
[http://dx.doi.org/10.1016/j.bbagen.2004.08.012]
[68]
Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992; 358(6389): 771-.
[http://dx.doi.org/10.1038/358771a0]
[69]
Klinge CM, Bodenner DL, Desai D, Niles RM, Traish AM. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro. Nucleic Acids Res 1997; 25(10): 1903-12.
[http://dx.doi.org/10.1093/nar/25.10.1903]
[70]
Lobo GP, Isken A, Hoff S, Babino D, von Lintig J. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 2012; 139(16): 2966-77.
[http://dx.doi.org/10.1242/dev.079632]
[71]
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000; 405(6785): 421-4.
[http://dx.doi.org/10.1038/35013000]
[72]
Sun Y, Bennett A. Cannabinoids: a new group of agonists of PPARs. PPAR Res 2007.
[http://dx.doi.org/10.1155/2007/23513]
[73]
Evans RM, Barish GD, Wang Y-X. PPARs and the complex journey to obesity. Nat Med 2004; 10(4): 355-.
[http://dx.doi.org/10.1038/nm1025]
[74]
Meiliana A, Wijaya A. Peroxisome proliferator–activated receptors and the metabolic syndrome. Indones Biomed J 2009; 1(1): 4-31.
[http://dx.doi.org/10.18585/inabj.v1i1.79]
[75]
Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta 2007; 1771(8): 915-25.
[76]
Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem 1997; 272(30): 18779-89.
[http://dx.doi.org/10.1074/jbc.272.30.18779]
[77]
Kliewer SA, Xu HE, Lambert MH, Willson TM. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001; 56: 239-63.
[http://dx.doi.org/10.1210/rp.56.1.239]
[78]
Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46(8): 1319-27.
[http://dx.doi.org/10.2337/diab.46.8.1319]
[79]
Vidal-Puig A, Jimenez-Linan M, Lowell BB, et al. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 1996; 97(11): 2553-61.
[http://dx.doi.org/10.1172/JCI118703]
[80]
Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 2007; 3(4):e64.
[http://dx.doi.org/10.1371/journal.pgen.0030064]
[81]
Penumetcha M, Santanam N. Nutraceuticals as ligands of PPAR. PPAR Res 2012; 2012 1-7
[http://dx.doi.org/10.1155/2012/858352]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2020
Page: [846 - 853]
Pages: 8
DOI: 10.2174/1573401315666190619111557
Price: $65

Article Metrics

PDF: 12
HTML: 3
PRC: 2