Overview of Sustainable Plant Growth and Differentiation and the Role of Hormones in Controlling Growth and Development of Plants Under Various Stresses

Author(s): Shahid Ali*, Abdul Majeed Baloch

Journal Name: Recent Patents on Food, Nutrition & Agriculture

Volume 11 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Plant development is different from animals by many fundamental aspects; as they have immobilized cells, a rigid cell wall, and the large central vacuole. Plant growth and cell division are restricted to the specific area of the shoot and root called meristems. Plants have the ability to carry out differentiation, dedifferentiation and redifferentiation. In plants, the growth and differentiation processes are controlled by hormonal and genetic factors. Phytohormones can exert independent/ dependent actions on plant growth and development. A pool of stem cells is placed at the niche of the apex meristem, which is the source of self-renewal of the cell system and its maintenance to provide cells to differentiated tissues. A complex interaction network between hormones and other factors maintains a balance between cell division and differentiation. Auxins promote the growth, gibberellins’ function in seed germination, cytokinin’s influence on cell division and delay leaf senescence; abscisic acid promotes the stomatal closure and bud dormancy, while salicylic acid promotes resistance against different diseases. Plants are often exposed to different abiotic and biotic stresses, for example, heat, cold, drought, salinity etc., whereas biotic stress arises mainly from fungi, bacteria, insect, etc. Phytohormones play a critical role in well-developed mechanisms that help to perceive the stress signal and enable the plant’s optimal growth response. In this review, we studied both the intrinsic and extrinsic factors which govern growth and differentiation of plants under normal and stress condition. This review also deals with genetic modifications occurring in the cell and cell signaling during growth and differentiation.

Keywords: Plant hormones, meristem, environmental stress, signalling, differentiation, genetic factors.

[1]
Grayson M. Agriculture and drought. Nature 2013; S1: 501.
[http://dx.doi.org/10.1038/501S1a] [PMID: 24067757]
[2]
Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA. UPLC‐HRMS‐based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long‐term drought stress. Plant Cell Environ 2019; 42(1): 115-32.
[http://dx.doi.org/10.1111/pce.13195] [PMID: 29532945]
[3]
Gleick PH. Water in crisis: Paths to sustainable water use. Ecol Appl 1998; 8: 571-9.
[http://dx.doi.org/10.1890/1051- 0761(1998)008[0571:WICPTS]2.0.CO;2]
[4]
Simontacchi M, Galatro A, Ramos-Artuso F. Santa- María GE. Plant survival in a changing environment: The role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 2015; 6: 977.
[http://dx.doi.org/10.3389/fpls.2015.00977] [PMID: 26617619]
[5]
Geiger D, Maierhofer T, Al-Rasheid KAS, et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 2011; 4: ra32. 2011;
[PMID: 21586729 ]
[6]
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99 .
[http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701] [PMID: 15377225]
[7]
Gonzalez N, Beemster GT, Inzé D. David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 2009; 12: 157-64.
[http://dx.doi.org/10.1016/j.pbi.2008.11.003] [PMID: 19119056]
[8]
Paciorek T, Zazimalova E, Ruthardt N, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 2005; 435: 1251-6.
[http://dx.doi.org/10.1038/nature03633] [PMID: 15988527]
[9]
Zhao Y, Christensen SK, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 2001; 291: 306-9.
[http://dx.doi.org/10.1126/science.291.5502.306] [PMID: 11209081]
[10]
Takatsuka H, Umeda M. Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 2014; 65: 2633-43.
[http://dx.doi.org/10.1093/jxb/ert485] [PMID: 24474807]
[11]
Wang R, Estelle M. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr Opin Plant Biol 2014; 21: 51-8.
[http://dx.doi.org/10.1016/j.pbi.2014.06.006] [PMID: 25032902]
[12]
Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 2007; 143: 1362-71.
[http://dx.doi.org/10.1104/pp.106.091561] [PMID: 17220367]
[13]
De Smet I. Jü rgens G. Patterning the axis in plants-auxin in control. Curr Opin Genet Dev 2007; 17: 337-43.
[http://dx.doi.org/10.1016/j.gde.2007.04.012] [PMID: 17627808]
[14]
Flores-Sandoval E, Eklund DM, Bowman JL. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 2015; 11: e1005207
[http://dx.doi.org/10.1371/journal.pgen.1005207] [PMID: 26020649]
[15]
Kato H, Ishizaki K, Kouno M, et al. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet 2015; 11: e1005084
[http://dx.doi.org/10.1371/journal.pgen.1005084] [PMID: 26020919]
[16]
Moller B, Weijers D. Auxin control of embryo patterning. Cold Spring Harb Perspect Biol 2009; 1: a001545
[http://dx.doi.org/10.1101/cshperspect.a001545] [PMID: 20066117]
[17]
Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M. The Transport Inhibitor Response2 (TIR2) gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 2009; 151(1): 168-79.
[http://dx.doi.org/10.1104/pp.109.138859] [PMID: 19625638]
[18]
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nat Chem Biol 2009; 5: 308-16.
[http://dx.doi.org/10.1038/nchembio.164] [PMID: 19377457]
[19]
Haberlandt G. Zur Physiologie der Zellteilung. Sitzber. K. Preuss Akad Wiss 1913; p. 318.
[20]
Khan N, Bano A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation 2016; 18(3): 211-21. a
[http://dx.doi.org/10.1080/15226514.2015.1064352] [PMID: 26507686]
[21]
Ali S, Naeem K, Faisal N, Shazia E, Wajid N. Efffect of sucrose and growth regulator on the microtuberization of CIP potato (Solanum tuberosum) germplasm. Pak J Bot 2018; 50(2): 763-8.
[22]
Persson BC, Esberg B, Ólafsson Ó, Björk GR. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 1994; 76: 1152-60.
[http://dx.doi.org/10.1016/0300-9084(94)90044-2] [PMID: 7748950]
[23]
Gajdošová S, Spíchal L, Kamínek M, et al. Distribution biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 2011; 62: 2827-40.
[http://dx.doi.org/10.1093/jxb/erq457] [PMID: 21282330]
[24]
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 2006; 57: 431-49.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105231] [PMID: 16669769]
[25]
Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyl transferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 2001; 276: 26405-10.
[http://dx.doi.org/10.1074/jbc.M102130200] [PMID: 11313355]
[26]
Kasahara H, Takei K, Ueda N, et al. Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 2004; 279: 14049-54.
[http://dx.doi.org/10.1074/jbc.M314195200] [PMID: 14726522]
[27]
Werner T, Nehnevajova E. Kö llmer I, et al . Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 2010; 22: 3905-20.
[http://dx.doi.org/10.1105/tpc.109.072694] [PMID: 21148816]
[28]
Khan N, Ali S, Shahid MA, Kharabian-Masouleh A. Advances in detection of stress tolerance in plants through metabolomics approaches. Plant Omics 2017; 10(3): 153.
[http://dx.doi.org/10.21475/poj.10.03.17.pne600]
[29]
Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 1957; 11: 118-31.
[PMID: 13486467]
[30]
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol 2008; 59: 225-51.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092804] [PMID: 18173378]
[31]
Achard P, Genschik P. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 2009; 60: 1085-92.
[http://dx.doi.org/10.1093/jxb/ern301] [PMID: 19043067]
[32]
Ali S, Khan N, Nouroz F, et al. In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field. In Vitro Cell Dev Biol Plant 2018; 54: 104.
[http://dx.doi.org/10.1007/s11627-017-9874-x]
[33]
Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 2013; 4: 199.
[http://dx.doi.org/10.3389/fpls.2013.00199] [PMID: 23785379]
[34]
Hedden P. The genes of the green revolution. Trends Genet 2003; 19: 5-9.
[http://dx.doi.org/10.1016/S0168-9525(02)00009-4] [PMID: 12493241]
[35]
Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP. The Arabidopsis mutant sleepy1gar2-1protein promotes plant growth by increasing the affinity of the SCFSLY1E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 2004; 16: 1406-18.
[http://dx.doi.org/10.1105/tpc.021386] [PMID: 15161962]
[36]
Ariizumi T, Lawrence PK, Steber CM. The role of two F-box proteins SLEEPY1 and SNEEZY in Arabidopsis gibberellins signaling. Plant Physiol 2011; 155: 765-75.
[http://dx.doi.org/10.1104/pp.110.166272] [PMID: 21163960]
[37]
Tyler L, Thomas SG, Hu J, et al. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 2004; 135: 1008-19.
[http://dx.doi.org/10.1104/pp.104.039578] [PMID: 15173565]
[38]
Burg SP, Burg EA. In: Biochemistry & physiology of plant growth substances. Runge Press, Ottawa, Canada 1967; p. 1275.
[39]
Vishwakarma K, Upadhyay N, Kumar N, et al. Ab-scisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Re-view on Current Knowledge and Future Prospects. Front Plant Sci 2017; 8: 161.
[http://dx.doi.org/10.3389/fpls.2017.00161]
[40]
Chen YF, Etheridge N, Schaller GE. Ethylene signal transduction. Ann Bot (Lond) 2005; 95: 901-15.
[http://dx.doi.org/10.1093/aob/mci100] [PMID: 15753119]
[41]
Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009; 324: 1064-8.
[http://dx.doi.org/10.1126/science.1172408] [PMID: 19407143]
[42]
Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009; 324: 1068-71.
[http://dx.doi.org/10.1126/science.1173041] [PMID: 19407142]
[43]
Vlad F, Rubio S, Rodrigues A, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 2009; 21: 3170-84.
[http://dx.doi.org/10.1105/tpc.109.069179] [PMID: 19855047]
[44]
Adie BA, Pérez-Pérez J, Pérez-Pérez MM, et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 2007; 19: 1665-81.
[http://dx.doi.org/10.1105/tpc.106.048041] [PMID: 17513501]
[45]
Mandava NB. Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 1988; 39: 23-52.
[http://dx.doi.org/10.1146/annurev.pp.39.060188.000323]
[46]
Clouse SD, Zurek D. Molecular analysis of brassinolide action in plant growth and development. In Brassinosteroids: Chemistry, Bioactivity, & Applications. Cutler HG, Yokota T, Adam G eds . (Washington, D.C.: American Chemical Society), 1991; pp. 122-40.
[http://dx.doi.org/10.1021/bk-1991-0474.ch011]
[47]
Ali S, Wang L, Naeem K, Muhammad I, Zahid M. Effects of fertilizers on incidence of damping-off in nursery of flue cuerd virgina cv. speight g-28. J Biosci Agric Res 2016; 10(02): 877-85.
[http://dx.doi.org/10.18801/jbar.100216.107]
[48]
Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 1984; 35: 155-89.
[http://dx.doi.org/10.1146/annurev.pp.35.060184.001103]
[49]
Bleecker AB, Kende H. Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol 2000; 16: 1-18.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.1] [PMID: 11031228]
[50]
Kende H. Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 1993; 44: 283-307.
[http://dx.doi.org/10.1146/annurev.pp.44.060193.001435]
[51]
Yin Y, Wang ZY, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 2002; 109: 181-91.
[http://dx.doi.org/10.1016/S0092-8674(02)00721-3] [PMID: 12007405]
[52]
Fukuda H. Tracheary element differentiation. Plant Cell 1997; 9: 1147-56.
[http://dx.doi.org/10.1105/tpc.9.7.1147] [PMID: 12237380]
[53]
Clouse SD, Sasse JM. Brassinosteroids: Essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 1998; 49: 427-51.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.427] [PMID: 15012241]
[54]
Choe S, Noguchi T, Fujioka S, et al. The arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 1999; 11: 207-21. b
[PMID: 9927639]
[55]
Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 2003; 54: 137-64.
[http://dx.doi.org/10.1146/annurev.arplant.54.031902.134921] [PMID: 14502988]
[56]
Divi UK, Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N Biotechnol 2009; 26: 131-6.
[http://dx.doi.org/10.1002/hlca.19620450233]
[57]
Swaczynová J, Novák O, Hauserová E, Fuksová K, Šíša M, Strnad M. New technologies for estimation of naturally occurring brassinosteroids. J Plant Growth Regul 2007; 26: 1-14.
[58]
Eng F, Haroth S, Feussner K, et al. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites. PLoS One 2016; 11(12): e0167627
[http://dx.doi.org/10.1371/journal. pone.0167627]
[59]
Demole E, Lederer E, Mercier D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de lessence de jasmin. Helv Chim Acta 1962; 45: 675-85.
[60]
Ruan J, Zhou Y, Zhou M, et al. Jasmonic Acid Signaling Pathway in Plants. Int J Mol Sci 2019; 20(10): 2479.
[61]
Wasternack C, Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 2013; 111: 1021-58.
[http://dx.doi.org/10.1093/aob/mct067]
[62]
Khan N, Bano A, Shahid MA, Nasim W, Babar MA. Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia 2018; 1: 1-6.
[63]
Hany F, El-Gepaly HMKH, Fouad OA. Nanosilica and jasmonic acid as alternative methods for control Tuta absoluta (Meyrick) in tomato crop under field conditions. Archives Phytopathol Plant Protection 2016; 49(13-14): 362-70.
[http://dx.doi.org/10.1080/03235408.2016.1219446]
[64]
Farmer EE. Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol 1994; 26: 1423-37.
[http://dx.doi.org/10.1007/BF00016483] [PMID: 7858198]
[65]
Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 355-81.
[http://dx.doi.org/10.1146/annurev.arplant.48.1.355] [PMID: 15012267]
[66]
Wick JY. Aspirin: a history, a love story. Consult Pharm 2012; 27: 322-9.
[http://dx.doi.org/10.4140/TCP.n.2012.322] [PMID: 22591976]
[67]
Khan N, Zandi P, Ali S, Mehmood A, Shahid MA. Impact of Salicylic acid and PGPR on the Drought Tolerance and Phytoremediation potential of Helianthus annus. Front Microbiol 2018; 9.
[68]
Godfray HC, Beddington JR, Crute IR, et al. Food security: the challenge of feeding 9 billion people. Science 2010; 327: 812-8.
[http://dx.doi.org/10.1126/science.1185383] [PMID: 20110467]
[69]
Khan N, Bano A, Babar MA. The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 2017; 72(3): 195-205.
[http://dx.doi.org/10.1007/s13199-016-0457-0]
[70]
Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in Chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 2019; 9(1): 2097.
[http://dx.doi.org/10.1038/s41598-019-38702-8] [PMID: 30765803]
[71]
Steeves TA, Sussex IM. Patterns in plant development. Cambridge, UK: Cambridge University Press 1989.
[http://dx.doi.org/10.1017/CBO9780511626227]
[72]
Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 2018; 58(12): 1009-22.
[http://dx.doi.org/10.1002/jobm.201800309] [PMID: 30183106]
[73]
Rademacher W. Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 2015; 34: 845-72.
[http://dx.doi.org/10.1007/s00344-015-9541-6]
[74]
Flasinski M, Hac-Wydro K. Natural vs synthetic auxin: studies on the interactions between plant hormones and biological membrane lipids. Environ Res 2014; 133: 123-34.
[http://dx.doi.org/10.1016/j.envres.2014.05.019] [PMID: 24926918]
[75]
Hopkins WG, Hüner NP. Introduction to plant physiology. 3rd edition. John Wiley and Sons Inc. 2004; p. 560.
[76]
Sosnowski J, Malinowska E, Jankowski K, Król J, Redzik P. An estimation of the effects of synthetic auxin and cytokinin and the time of their application on some morphological and physiological characteristics of Medicago x varia T. Martyn. Saudi J Biol Sci 2019; 26(1): 66-73.
[http://dx.doi.org/10.1016/j.sjbs.2016.12.023]
[77]
Harms CL, Oplinger ES. Plant growth regulators: their use in crop production North Central Region Extension Publication 303, Specialized Soil Amendments, Products and Growth Stimulants. U.S. Department of Agriculture and Cooperative Extension Services, Illinois, IA 1988.
[78]
Balzergue C, Dartevelle T, Godon C, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun 2017; 8: 15300.
[http://dx.doi.org/10.1038/ncomms15300] [PMID: 28504266]
[79]
Bennett TA, Liu MM, Aoyama T, et al. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol 2014; 24: 2776-85.
[http://dx.doi.org/10.1016/j.cub.2014.09.054] [PMID: 25448003]
[80]
Liu CM, Xu ZH, Chua NH. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 1993; 5: 621-30.
[http://dx.doi.org/10.2307/3869805] [PMID: 12271078]
[81]
Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet 2004; 38: 87-117.
[http://dx.doi.org/10.1146/annurev.genet.38.072902.092259] [PMID: 15568973]
[82]
Sabatini S, Beis D, Wolkenfelt H, et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 1999; 99: 463-72.
[http://dx.doi.org/10.1016/S0092-8674(00)81535-4] [PMID: 10589675]
[83]
Aloni R. The induction of vascular tissues by auxin and cytokinin.Plant Hormones: Physiology, Biochemistry and Molecular Biology. PJ Davies, Ed, Kluwer, Dordrecht. 1995; pp. 531-46.
[http://dx.doi.org/10.1007/978-94-011-0473-9_25]
[84]
Kuhlemeier C, Reinhardt D. Auxin and phyllotaxis. Trends Plant Sci 2001; 6: 187-9.
[http://dx.doi.org/10.1016/S1360-1385(01)01894-5] [PMID: 11335153]
[85]
Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000; 12: 507-18.
[http://dx.doi.org/10.1105/tpc.12.4.507] [PMID: 10760240]
[86]
Abdullah AM, Braun PV, Hsia KJ. Programmable shape transformation of elastic spherical domes. Soft Matter 1 2016; 2: 6184-95.
[87]
Penarrubia L, Aguilar M, Margossian L, Fischer R. An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 1992; 4: 681-7.
[http://dx.doi.org/10.2307/3869526] [PMID: 12297659]
[88]
Stepanova A, Ecker J. Ethylene signaling: From mutants to molecules. Curr Opin Plant Biol 2000; 3: 3703-14.
[http://dx.doi.org/10.1016/S1369-5266(00)00096-0] [PMID: 11019801]
[89]
Klee HJ. Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 2002; 53: 2057-63.
[http://dx.doi.org/10.1093/jxb/erf062] [PMID: 12324529]
[90]
Liu Y, Gur A, Ronen G, et al. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 2003; 1: 195-208.
[http://dx.doi.org/10.1046/j.1467-7652.2003.00018.x] [PMID: 17156032]
[91]
Alba R, Cordonnier-Pratt MM, Pratt LH. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 2000; 123: 363-70.
[http://dx.doi.org/10.1104/pp.123.1.363] [PMID: 10806253]
[92]
Moubayidin L, Di Mambro R, Sabatini S. Cytokinin-auxin crosstalk. Trends Plant Sci 2009; 14: 557-62.
[http://dx.doi.org/10.1016/j.tplants.2009.06.010] [PMID: 19734082]
[93]
Pernisova M, Klima P, Horak J, et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 2009; 106: 3609-14.
[http://dx.doi.org/10.1073/pnas.0811539106] [PMID: 19211794]
[94]
Ruzicka K, Simaskova M, Duclercq J, et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 2009; 106: 4284-9.
[http://dx.doi.org/10.1073/pnas.0900060106] [PMID: 19246387]
[95]
Bai MY, Shang JX, Oh E, et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 2012; 14: 810-7.
[http://dx.doi.org/10.1038/ncb2546] [PMID: 22820377]
[96]
Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc Lond B Biol Sci 2012b; 367: 1461-8.
[http://dx.doi.org/10.1098/rstb.2011.0232] [PMID: 22527388]
[97]
Fleet CM, Sun T. A DELLA cane balance: the role of gibberellins in plant morphogenesis. Curr Opin Plant Biol 2005; 8: 77-85.
[http://dx.doi.org/10.1016/j.pbi.2004.11.015] [PMID: 15653404]
[98]
Perez-Perez JM. Hormone signaling and root development: an update on the latest Arabidopsis thaliana research. Funct Plant Biol 2007; 34: 163-71.
[http://dx.doi.org/10.1071/FP06341]
[99]
Sauter H, Zeeh B. Plant growth regulators. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. . 2010.
[http://dx.doi.org/10.1002/14356007.a20_415]
[100]
Tardieu FO, Davies WJ. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol 1992; 98: 540-5.
[http://dx.doi.org/10.1104/pp.98.2.540] [PMID: 16668674]
[101]
Cano-Delgado A, Yin Y, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 2004; 131: 5341-51.
[http://dx.doi.org/10.1242/dev.01403] [PMID: 15486337]
[102]
Zhang J, Jia W, Yang J, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 2006; 97: 111-9.
[http://dx.doi.org/10.1016/j.fcr.2005.08.018]
[103]
Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul 2003; 22: 289-97.
[http://dx.doi.org/10.1007/s00344-003-0058-z] [PMID: 14676968]
[104]
Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 2009; 47: 1-8.
[http://dx.doi.org/10.1016/j.plaphy.2008.10.002] [PMID: 19010688]
[105]
Sasse JM. Physiological actions of brassinosteroids: an update. J Plant Growth Regul 2003; 22: 276-88.
[http://dx.doi.org/10.1007/s00344-003-0062-3] [PMID: 14676971]
[106]
Shibuya K, Barry KG, Ciardi JA, et al. The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 2004; 136: 2900-12.
[http://dx.doi.org/10.1104/pp.104.046979] [PMID: 15466231]
[107]
Khan N, Bano A, Zandi P. Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J Plant Interact 2018; 13(1): 239-47.
[http://dx.doi.org/10.1080/17429145.2018.1471527]
[108]
Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 2014; 5: 4.
[http://dx.doi.org/10.3389/fpls.2014.00004] [PMID: 24478784]
[109]
Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 1998; 17: 1405-11.
[http://dx.doi.org/10.1093/emboj/17.5.1405] [PMID: 9482737]
[110]
Aida M, Vernoux T, Furutani M, Traas J, Tasaka M. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 2002; 129: 3965-74.
[PMID: 12163400]
[111]
Ju¨rgens G. Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 2001; 20: 3609-16.
[http://dx.doi.org/10.1093/emboj/20.14.3609] [PMID: 11447101]
[112]
Kumar S, Kaur R, Kaur N, et al. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 2011; 33: 2091-101.
[http://dx.doi.org/10.1007/s11738-011-0748-2]
[113]
Bolan N, Brennan R. Bioavailability of N, P, K, Ca, Mg, S, Si, and micronutrients. In Huang, Pan Ming; Li, Yuncong; Sumner, Malcolm E Handbook of soil sciences: resource management and environmental impacts 2nd Ed . Boca Raton, FL: CRC Press. 2011. 11–1 to 11-80. ISBN 9781439803073


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2020
Page: [105 - 114]
Pages: 10
DOI: 10.2174/2212798410666190619104712

Article Metrics

PDF: 14