Genus Calotropis: A Hub of Medicinally Active Phytoconstituents

Author(s): Shelly Pathania, Parveen Bansal, Prasoon Gupta, Ravindra K. Rawal*

Journal Name: Current Traditional Medicine

Volume 6 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Traditional medicines derived from plant and other natural sources have several advantages over synthetic drugs when used for the management of pathological conditions. Natural product based therapies are safer than synthetic drugs-based chemotherapies. One of such sources of bioactive molecules includes C. procera and C. gigantea, flowering herbal plants, belonging to the genus Calotropis, family Apocynaceae, which, due to their diverse pharmacological profile, have been widely employed in Ayurveda, Unani, Siddha and other traditional systems for the treatment of various diseases. The various parts of this plant are rich in phytoconstituents such as cardiac glycosides, flavonoids, terpenoids, steroids, phenolic compounds, proteins etc. Due to the presence of multiple constituents, this plant possess diverse biological activities such as analgesic, antitumor, antihelmintic, antioxidant, hepatoprotective, antidiarrhoeal, anticonvulsant, antimicrobial, oestrogenic, antinociceptive, antimalarial activity etc. The present review provides comprehensive information about various phytochemical constituents of the plant along with their medicinal importance.

Keywords: Calotropis procera, C. gigantea, phytoconstituents, cardenolides, flavanoids, terpenes, sterols.

[1]
Zhou ZH, Yang J, Kong AN. Phytochemicals in traditional Chinese herbal medicine: Cancer prevention and epigenetics mechanisms. Curr Pharmacol Rep 2017; 3: 77-91.
[http://dx.doi.org/10.1007/s40495-017-0086-1]
[2]
Sarkar S, Chakraverty R, Ghosh A. Calotropis gigantea linn.- A complete busket of Indian traditional medicine. Int J Pharm Res Sci 2014; 2: 7-17.
[3]
Oloumi H. Phytochemistry and ethno-pharmaceutics of Calotropis procera. Ethno-Pharm Prod 2014; 1: 1-8.
[4]
Azhar MF, Siddiqui MT, Ishaque M, et al. Study of ethnobotany and indigenous use of Calotropis procera (Ait.) in cholistan desert, Punjab, Pakistan. J Agric Res 2014; 52: 117-26.
[5]
Kumar PS, Suresh E, Kalavathy S. Review on a potential herb Calotropis gigantea (L) R Br Sch Acad. J Pharm 2013; 2: 135-43.
[6]
Murti Y, Yogi B, Pathak D. Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae). Int J Ayurveda Res 2010; 1(1): 14-7.
[http://dx.doi.org/10.4103/0974-7788.59938] [PMID: 20532092]
[7]
Dirir AM, Cheruth AJ, Ksiksi TS. Ethnomedicine, phytochemistry and pharmacology of Calotropis procera and Tribulus terrestris. J Nat Rem 2017; 17: 38-47.
[http://dx.doi.org/10.18311/jnr/2017/11043]
[8]
Sharma R, Thakur GS, Sanodiya BS, et al. Therapeutic potential of Calotropis procera: A giant milkweed. J Pharm Biol Sci 2012; 4: 42-57.
[http://dx.doi.org/10.9790/3008-0424257]
[9]
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 2012; 194(1): 28-45.
[http://dx.doi.org/10.1111/j.1469-8137.2011.04049.x] [PMID: 22292897]
[10]
Sweidan NI, Abu Zarga MH. Two novel cardenolides from Calotropis procera. J Asian Nat Prod Res 2015; 17(9): 900-7.
[http://dx.doi.org/10.1080/10286020.2015.1040772] [PMID: 25971597]
[11]
Wang SC, Lu MC, Chen HL, et al. Cytotoxicity of calotropin is through caspase activation and downregulation of anti-apoptotic proteins in K562 cells. Cell Biol Int 2009; 33(12): 1230-6.
[http://dx.doi.org/10.1016/j.cellbi.2009.08.013] [PMID: 19732845]
[12]
Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. ChemBioChem 2014; 15(6): 872-8.
[http://dx.doi.org/10.1002/cbic.201300786] [PMID: 24644251]
[13]
Ibrahim SR, Mohamed GA, Shaala LA, et al. Proceraside A, a new cardiac glycoside from the root barks of Calotropis procera with in vitro anticancer effects. Nat Prod Res 2014; 28(17): 1322-7.
[http://dx.doi.org/10.1080/14786419.2014.901323] [PMID: 24678783]
[14]
Singh V. Calotropis boon or bane? Open J Stomatol 2012; 2: 149.
[http://dx.doi.org/10.4236/ojst.2012.22027]
[15]
Gupta RS, Sharma N, Dixit VP. Calotropin - a novel compound for fertility control. Anc Sci Life 1990; 9(4): 224-30.
[PMID: 22557704]
[16]
Van Khang P, Zhang ZG, Meng YH, et al. Cardenolides from the bark of Calotropis gigantea. Nat Prod Res 2014; 28(15): 1191-6.
[http://dx.doi.org/10.1080/14786419.2014.909419] [PMID: 24735475]
[17]
Tian L, Xie XH, Zhu ZH. Calotropin regulates the apoptosis of non‑small cell cancer by regulating the cytotoxic T‑lymphocyte associated antigen 4‑mediated TGF‑β/ERK signaling pathway. Mol Med Rep 2018; 17(6): 7683-91.
[http://dx.doi.org/10.3892/mmr.2018.8853] [PMID: 29620207]
[18]
Gurung AB, Ali MA, Bhattacharjee A, et al. Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication. Genet Mol Res 2016; 15(2): 1-7.
[http://dx.doi.org/10.4238/gmr.15027829] [PMID: 27173346]
[19]
Kushwaha VB, Singh A. Effect of uscharin on the reproduction of the snail Lymnaea acuminata. World J Zool 2010; 5: 15-9.
[20]
Jacinto SD, Chun EA, Montuno AS, Shen CC, Espineli DL, Ragasa CY. Cytotoxic cardenolide and sterols from Calotropis gigantea. Nat Prod Commun 2011; 6(6): 803-6.
[http://dx.doi.org/10.1177/1934578X1100600614] [PMID: 21815415]
[21]
Parhira S, Zhu GY, Jiang RW, Liu L, Bai LP, Jiang ZH. 2′-Epi-uscharin from the latex of Calotropis gigantea with HIF-1 inhibitory activity. Sci Rep 2014; 4: 4748.
[http://dx.doi.org/10.1038/srep04748] [PMID: 24756103]
[22]
Parhira S, Zhu GY, Chen M, Bai LP, Jiang ZH. Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity. J Ethnopharmacol 2016; 194: 930-6.
[http://dx.doi.org/10.1016/j.jep.2016.10.070] [PMID: 27793783]
[23]
Yoneyama T, Arai MA, Akamine R, et al. Notch inhibitors from Calotropis gigantea that induce neuronal differentiation of neural stem cells. J Nat Prod 2017; 80(9): 2453-61.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00282] [PMID: 28817274]
[24]
You H, Lei M, Song W, et al. Cytotoxic cardenolides from the root bark of Calotropis gigantea. Steroids 2013; 78(10): 1029-34.
[http://dx.doi.org/10.1016/j.steroids.2013.06.002] [PMID: 23851141]
[25]
Mohamed NH, Liu M, Abdel-Mageed WM, et al. Cytotoxic cardenolides from the latex of Calotropis procera. Bioorg Med Chem Lett 2015; 25(20): 4615-20.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.044] [PMID: 26323871]
[26]
Seeka C, Sutthivaiyakit S. Cytotoxic cardenolides from the leaves of Calotropis gigantea. Chem Pharm Bull 2010; 58(5): 725-8.
[http://dx.doi.org/10.1248/cpb.58.725] [PMID: 20460804]
[27]
Hemalatha R, Padmini E. In vivo and in silico studies with the latex of the milk weed-Calotropis procera (Ait). R Br Drug Invent Today 2010; 2: 207-11.
[28]
Rohit M, Ashok T, Vijaykumar R, et al. Molecular docking study of Cassia tora, Brassica campestris and Calotropis procera as acetylcholinesterase inhibitor. Indian J Pharm Educ Res 2016; 50: 116-22.
[http://dx.doi.org/10.5530/ijper.50.1.15]
[29]
Al-Taweel AM, Perveen S, Fawzy GA, et al. Evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. Evid Based Complement Alternat Med 2017; 20178086791
[http://dx.doi.org/10.1155/2017/8086791] [PMID: 28951762]
[30]
Kanojiya S, Madhusudanan KP. Rapid identification of calotropagenin glycosides using high-performance liquid chromatography electrospray ionisation tandem mass spectrometry. Phytochem Anal 2012; 23(2): 117-25.
[http://dx.doi.org/10.1002/pca.1332] [PMID: 21656605]
[31]
Ibrahim SR, Mohamed GA, Shaala LA, Banuls LM, Kiss R, Youssef DT. Calotroposides H-N, new cytotoxic oxypregnane oligoglycosides from the root bark of Calotropis procera. Steroids 2015; 96: 63-72.
[http://dx.doi.org/10.1016/j.steroids.2015.01.012] [PMID: 25641077]
[32]
Mahar R, Dixit S, Joshi T, et al. Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the root bark of Calotropis gigantea as potent anticancer agents. RSC Advances 2016; 6: 104215-26.
[http://dx.doi.org/10.1039/C6RA23600F]
[33]
Ibrahim SR, Mohamed GA, Shaala LA, et al. Calotroposide S, new oxypregnane oligoglycoside from Calotropis procera root bark. Rec Nat Prod 2016; 10: 761.
[34]
Sun M, Pan D, Chen Y, Li Y, Gao K, Hu B. Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget 2017; 8(20): 32807-20.
[http://dx.doi.org/10.18632/oncotarget.16454] [PMID: 28415625]
[35]
Sun Y, Huang YH, Huang FY, et al. 3′-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Theranostics 2018; 8(7): 2044-60.
[http://dx.doi.org/10.7150/thno.23304] [PMID: 29556372]
[36]
Saratha V, Pillai SI, Subramanian S. Isolation and characterization of lupeol, a triterpenoid from Calotropis gigantea latex. Int J Pharm Sci Rev Res 2011; 10: 54-7.
[37]
Rupal C, Vadalia K, Gokani R, et al. HPTLC method for the determination of lupeol from Calotropis procera root bark and Nyctanthes arbortristis leaves. Int J Pharm Pharm Sci 2013; 5: 547-50.
[38]
Saratha V, Subramanian SP. Lupeol, a triterpenoid isolated from Calotropis gigantea latex ameliorates the primary and secondary complications of FCA induced adjuvant disease in experimental rats. Inflammopharmacology 2012; 20(1): 27-37.
[http://dx.doi.org/10.1007/s10787-011-0095-3] [PMID: 22002338]
[39]
Lee C, Lee JW, Seo JY, Hwang SW, Im JP, Kim JS. Lupeol inhibits LPS-induced NF-kappa B signaling in intestinal epithelial cells and macrophages, and attenuates acute and chronic murine colitis. Life Sci 2016; 146: 100-8.
[http://dx.doi.org/10.1016/j.lfs.2016.01.001] [PMID: 26767626]
[40]
Wagh S, Gujar J, Gaikar V. Experimental and modeling studies on extraction of amyrins from latex of mandar (Calotropis gigantea). Indian J Chem Technol 2012; 19: 427-33.
[41]
Kumar PS, Chezhian A, Raja PS, et al. Computational selections of terpenes present in the plant Calotropis gigantea as mosquito larvicide’s by blocking the sterol carrying protein, AeSCP-2. Bangladesh J Pharmacol 2012; 7: 1-5.
[42]
Dhivya R. In silico molecular docking and molecular dynamics applications in the designing of a new mosquito repellent from the plant Calotropis gigantea targeting the odorant binding protein of Culex quinquefasciatus. Int J Pharm Phytopharm Res 2013; p. 3.
[43]
Ibrahim SR, Mohamed GA, Shaala LA, et al. New ursane-type triterpenes from the root bark of Calotropis procera. Phytochem Lett 2012; 5: 490-5.
[http://dx.doi.org/10.1016/j.phytol.2012.04.012]
[44]
Mittal A, Ali M. Acyclic diterpenic constituents from the roots of Calotropis procera (Ait). R Br J Saudi Chem Soc 2015; 19: 59-63.
[http://dx.doi.org/10.1016/j.jscs.2011.12.019]
[45]
Patil SG, Patil MP, Maheshwari VL, et al. In vitro lipase inhibitory effect and kinetic properties of di-terpenoid fraction from Calotropis procera (Aiton). Biocatal Agric Biotechnol 2015; 4: 579-85.
[http://dx.doi.org/10.1016/j.bcab.2015.08.014]
[46]
Omer I, Abdurrahman I, Cai-Xia Y. New triterpenoid from the roots of Calotropis gigantea (L) Dryand (Asclepiadaceae). Am J Org Chem 2017; 7: 13-8.
[47]
Parhira S, Yang ZF, Zhu GY, et al. In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantea. PLoS One 2014; 9(8)e104544
[http://dx.doi.org/10.1371/journal.pone.0104544] [PMID: 25102000]
[48]
Nguyen KDH, Dang PH, Nguyen HX, Nguyen MTT, Awale S, Nguyen NT. Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorg Med Chem Lett 2017; 27(13): 2902-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.087 ] [PMID: 28495081]
[49]
Abdel-Mageed WM, Mohamed NH, Liu M, et al. Lipoxygenase inhibitors from the latex of Calotropis Procera. Arch Pharm Res 2016; 39: 1-9.
[http://dx.doi.org/10.1007/s12272-016-0725-9] [PMID: 26960736]
[50]
Chundattu SJ, Agrawal VK, Ganesh N. Phytochemical investigation of Calotropis procera. Arab J Chem 2016; 9: S230-4.
[http://dx.doi.org/10.1016/j.arabjc.2011.03.011]
[51]
Parihar G, Balekar N. Isolation and characterisation of stigmast-5-en-3-ol ([beta]-sitosterol) from Calotropis procera latex ethyl acetate fraction for immunomodulatory activity. Int J Pharm Sci Res 2017; 8: 1375.
[52]
Sureshkumar P, Senthilraja P, Kalavathy S. In-silico docking analysis of Calotropis gigantea (L). R Br derived compound against anti-cervical cancer activity. World Res J Comput Aided Drug Des 2012; 1: 9-12.
[53]
Parhira S, Zhu GY, Li T, Liu L, Bai LP, Jiang ZH. Inhibition of IKK-β by epidioxysterols from the flowers of Calotropis gigantea (Niu jiao gua). Chin Med 2016; 11: 9.
[http://dx.doi.org/10.1186/s13020-016-0081-1] [PMID: 26937251]
[54]
Salunke B, Kotkar H, Mendki P, et al. Efficacy of flavonoids in controlling Callosobruchus chinensis (L.)(Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot 2005; 24: 888-93.
[http://dx.doi.org/10.1016/j.cropro.2005.01.013]
[55]
Shaker KH, Morsy N, Zinecker H, et al. Secondary metabolites from Calotropis procera (Aiton). Phytochem Lett 2010; 3: 212-6.
[http://dx.doi.org/10.1016/j.phytol.2010.07.009]
[56]
Prabha MR, Vasantha K. Antioxidant, cytotoxicity and polyphenolic content of Calotropis procera (Ait.) R Br Flowers. J Appl Pharm Sci 2011; 1: 136.
[57]
Nenaah GE. Potential of using flavonoids, latex and extracts from Calotropis procera (Ait.) as grain protectants against two coleopteran pests of stored rice. Ind Crops Prod 2013; 45: 327-34.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.043]
[58]
Nenaah G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J Microbiol Biotechnol 2013; 29(7): 1255-62.
[http://dx.doi.org/10.1007/s11274-013-1288-2] [PMID: 23417281]
[59]
Awaad AA, Alkanhal HF, El-Meligy RM, et al. Anti-ulcerative colitis activity of Calotropis procera Linn. Saudi Pharm J 2018; 26(1): 75-8.
[http://dx.doi.org/10.1016/j.jsps.2017.10.010] [PMID: 29379336]
[60]
Mittal A, Ali M. Aliphatic and phenolic glycosides from the roots of Calotropis procera (Ait). R Br Int J Pharm Tech Res 2012; 4: 213-7.
[61]
Khasawneh MA, Elwy HM, Fawzi NM, et al. Antioxidant activity, lipoxygenase inhibitory effect and polyphenolic compounds from Calotropis procera (Ait). R Br Res J Phytochem 2011; 5: 80-8.
[http://dx.doi.org/10.3923/rjphyto.2011.80.88]
[62]
Joshi R, Sharma A, Jat BL. Analysis of antioxidant activity in extracts of Calotropis procera (Ait). R Br J Appl Biosci 2009; 17: 899-903.
[63]
Patel HV, Patel JD, Patel B. Comparative efficacy of phytochemical analysis and antioxidant activity of methanolic extract of Calotropis gigantea and Calotropis procera. Int J Life Sci Biotechnol Pharm Res 2014; 5: 107-13.
[64]
Manivannan R, Shopna R. Anti-microbial and anti-inflammatory activity of new 4-methoxy-3-(methoxymethyl) phenol and (e)-n′-(5-bromo-2-methoxybenzylidene)-4-methoxy benzohydrazide isolated from Calotropis gigantean white. Nat Prod Sci 2017; 23: 69-74.
[http://dx.doi.org/10.20307/nps.2017.23.1.69]
[65]
Oliveira JS, Costa-Lotufo LV, Bezerra DP, et al. In vivo growth inhibition of sarcoma 180 by latex proteins from Calotropis procera. Naunyn Schmiedebergs Arch Pharmacol 2010; 382(2): 139-49.
[http://dx.doi.org/10.1007/s00210-010-0525-6] [PMID: 20517595]
[66]
Kumar VL, Chaudhary P, Ramos MV, Mohan M, Matos MP. Protective effect of proteins derived from the latex of Calotropis procera against inflammatory hyperalgesia in monoarthritic rats. Phytother Res 2011; 25(9): 1336-41.
[http://dx.doi.org/10.1002/ptr.3428] [PMID: 21328619]
[67]
Kumar VL, Guruprasad B, Chaudhary P, Fatmi SM, Oliveira RS, Ramos MV. Protective effect of proteins derived from Calotropis procera latex against acute inflammation in rat. Auton Autacoid Pharmacol 2015; 35(1-2): 1-8.
[http://dx.doi.org/10.1111/aap.12022] [PMID: 25882716]
[68]
Teixeira FM, Ramos MV, Soares AA, et al. In vitro tissue culture of the medicinal shrub Calotropis procera to produce pharmacologically active proteins from plant latex. Process Biochem 2011; 46: 1118-24.
[http://dx.doi.org/10.1016/j.procbio.2011.01.033]
[69]
Kumar VL, Guruprasad B, Fatmi SMA, et al. In vivo efficacy of latex from Calotropis procera in ameliorating fever-biochemical characteristics and plausible mechanism. Appl Biochem Biotechnol 2017; 182(3): 1229-39.
[http://dx.doi.org/10.1007/s12010-016-2395-y] [PMID: 28078650]
[70]
de Alencar NMN, da Silveira Bitencourt F, de Figueiredo IST, et al. Side-effects of irinotecan (cpt-11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother Res 2017; 31(2): 312-20.
[http://dx.doi.org/10.1002/ptr.5752] [PMID: 27910140]
[71]
Rajamohan S, Kalaivanan P, Sivangnanam H, et al. Antioxidant, antimicrobial activities and GC-MS analysis of Calotropis gigantean white flowers. J Phytopharmacol 2014; 3: 405-9.
[72]
Cavalcante GS, de Morais SM, Andre WP, et al. Chemical composition and in vitro activity of Calotropis procera (Ait.) latex on Haemonchus contortus. Vet Parasitol 2016; 226: 22-5.
[http://dx.doi.org/10.1016/j.vetpar.2016.06.012] [PMID: 27514877]
[73]
Khang NHD, Phu DH, Nhan NT. Chemical constituents from the chloroform extract of the root of Calotropis gigantea (Linn), Asclepidaceae. J Anal Sci 2015; 20: 368-72.
[74]
Wang ZN, Wang MY, Mei WL, Han Z, Dai HF. A new cytotoxic pregnanone from Calotropis gigantea. Molecules 2008; 13(12): 3033-9.
[http://dx.doi.org/10.3390/molecules13123033] [PMID: 19052526]
[75]
Doshi HV, Parabia FM, Sheth FK, et al. Phytochemical analysis revealing the presence of two new compounds from the latex of Calotropis procera (Ait.) R. Br. Int J Plant Res 2012; 2: 28-30.
[http://dx.doi.org/10.5923/j.plant.20120202.05]
[76]
Wang MY, Yang Q, Yan XX, et al. Chemical constituents of Calotropis gigantea. Chem Nat Compd 2017; 53: 963-5.
[http://dx.doi.org/10.1007/s10600-017-2170-5]
[77]
Russell D, Al-Sayah M, Munir F. Volatile compounds produced by Calotropis procera (Family: Asclepiadaceae leaves that aid in the repulsion of grazers. J Biodivers Ecol Sci 2011; 1: 191-6.
[78]
Habib MR, Karim MR. Antitumour evaluation of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantea L. flower. Acta Pharm 2012; 62(4): 607-15.
[http://dx.doi.org/10.2478/v10007-012-0035-9] [PMID: 23333892]
[79]
Habib MR, Karim MR. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower. Mycobiology 2009; 37(1): 31-6.
[http://dx.doi.org/10.4489/MYCO.2009.37.1.031] [PMID: 23983504]
[80]
Chitme HR, Chandra M, Kaushik S. Studies on anti-diarrhoeal activity of Calotropis gigantea R.Br. in experimental animals. J Pharm Pharm Sci 2004; 7(1): 70-5.
[PMID: 15144737]
[81]
Shivkar Y, Kumar V. Anthelmintic activity of latex of Calotropis procera. Pharm Biol 2003; 41: 263-5.
[http://dx.doi.org/10.1076/phbi.41.4.263.15666]
[82]
Sayed Ael-D, Mohamed NH, Ismail MA, Abdel-Mageed WM, Shoreit AA. Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol. Ecotoxicol Environ Saf 2016; 128: 189-94.
[http://dx.doi.org/10.1016/j.ecoenv.2016.02.023] [PMID: 26946283]
[83]
Rajkuberan C, Sudha K, Sathishkumar G, Sivaramakrishnan S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim Acta A Mol Biomol Spectrosc 2015; 136(Pt B): 924-30.
[http://dx.doi.org/10.1016/j.saa.2014.09.115] [PMID: 25459618]
[84]
Yadav SK, Nagori BP, Desai PK. Pharmacological characterization of different fractions of Calotropis procera (Asclepiadaceae) in streptozotocin induced experimental model of diabetic neuropathy. J Ethnopharmacol 2014; 152(2): 349-57.
[http://dx.doi.org/10.1016/j.jep.2014.01.020] [PMID: 24486599]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 4
Year: 2020
Page: [312 - 331]
Pages: 20
DOI: 10.2174/2215083805666190619095933
Price: $25

Article Metrics

PDF: 12
HTML: 2
EPUB: 1
PRC: 1