Effects of Chrysin on Serum Corticosterone Levels and Brain Oxidative Damages Induced by Immobilization in Rat

Author(s): Tahereh Farkhondeh, Sediqeh Jalali, Milad Ashrafizadeh, Saeed Samarghandian*, Fariborz Samini

Journal Name: Cardiovascular & Hematological Disorders-Drug Targets
Formerly Current Drug Targets - Cardiovascular & Hematological Disorders

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Chrysin (CH) is one of the main flavonoids of vegetables, fruits, and plants, the neuroprotective effect of which has been demonstrated in this study.

Objective: The aim of the current investigation is the evaluation of the impact of chrysin (CH) on serum corticosterone level. Additionally, depression due to chronic stress was studied in animal models.

Methods: The rats were restrained for 1 hour daily for 3 weeks. During these weeks, all animals were daily injected with either vehicle or CH (10, 20, 30 µg/kg).

Results: Present data indicated that the serum corticosterone levels markedly elevated in the stressed group versus the non-stressed group (p<0.001). The serum corticosterone levels were significantly lower in the stress-exposed rats administered with CH versus the stress-exposed non- CH-treated rats (p<0.05). In addition, immobility time significantly increased in the rats submitted to restraint stress versus the non-stressed group (p<0.001). Also, the number of crossing significantly decreased in the rats submitted to restraint stress versus non-stressed rats (p<0.001). The immobility time and the number of crossing were also reduced in the CH-administrated stressed rats (30 mg/kg) versus non-treated stressed group (p<0.001, p<0.05, respectively). CH also ameliorated the MDA and GSH content as well as antioxidant enzymes activities in stressed rats (p<0.05).

Conclusion: The present study suggested that CH might be useful for the management of depressant-like effects induced by chronic stress via decreasing oxidative damage in the brain.

Keywords: Chrysin, corticosterone, behaviour, restraint stress, brain, oxidative stress.

[1]
Kim, S.H.; Oh, D.S.; Oh, J.Y.; Son, T.G.; Yuk, D.Y.; Jung, Y.S. Silymarin prevents restraint stress-induced acute liver injury by ameliorating oxidative stress and reducing inflammatory response. Molecules, 2016, 21(4), 443.
[http://dx.doi.org/10.3390/molecules21040443] [PMID: 27043523]
[2]
Rosenberger, C.; Elsenbruch, S.; Scholle, A.; de Greiff, A.; Schedlowski, M.; Forsting, M.; Gizewski, E.R. Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women. Neurogastroenterol. Motil., 2009, 21(7), 740-e45.
[http://dx.doi.org/10.1111/j.1365-2982.2009.01295.x] [PMID: 19368654]
[3]
Hong, I.S.; Lee, H.Y.; Kim, H.P. Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS One, 2014, 9(1), e87061
[http://dx.doi.org/10.1371/journal.pone.0087061] [PMID: 24466326]
[4]
Barua, CC; Buragohain, L; Rizavi, H; Gogoi, SB; Rahman, F; Siva, B; Mounika, K; Babu, KS; Chandra Pathak, D; Phukan, A Effect of seeds of Entada phaseoloides on chronic restrain stress in mice. J. Ayurveda. Integr. Med., 2019, S0975-9476(17), 30620-30624.
[5]
Wisłowska-Stanek, A.; Lehner, M.; Skórzewska, A.; Krząścik, P.; Płaźnik, A. Behavioral effects and CRF expression in brain structures of high- and low-anxiety rats after chronic restraint stress. Behav. Brain Res., 2016, 310, 26-35.
[http://dx.doi.org/10.1016/j.bbr.2016.05.001] [PMID: 27150225]
[6]
Quijije, N. Updates in the neuroendocrinology of stress and its clinical management. Curr. Opin. Endocrinol. Diabetes Obes., 2015, 22(4), 319-324.
[http://dx.doi.org/10.1097/MED.0000000000000176] [PMID: 26087342]
[7]
Sharma, U.K.; Sharma, A.K.; Gupta, A.; Kumar, R.; Pandey, A.; Pandey, A.K. Pharmacological activities of cinnamaldehyde and eugenol: antioxidant, cytotoxic and anti-leishmanial studies. Cell. Mol. Biol., 2017, 63(6), 73-78.
[http://dx.doi.org/10.14715/cmb/2017.63.6.15] [PMID: 28968213]
[8]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[9]
Kumar, S.; Pandey, A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res., 2015, 7(6), 438-457.
[http://dx.doi.org/10.9734/BJMMR/2015/16284]
[10]
Sharma, A.K.; Kumar, S.; Chashoo, G.; Saxena, A.K.; Pandey, A.K. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats. Indian J. Biochem. Biophys., 2014, 51(5), 358-364.
[PMID: 25630105]
[11]
Kumar, S.; Kumar, R.; Dwivedi, A.; Pandey, A.K. In vitro antioxidant, antibacterial, and cytotoxic activity and in vivo effect of Syngonium podophyllum and Eichhornia crassipes leaf extracts on isoniazid induced oxidative stress and hepatic markers. BioMed Res. Int., 2014, 2014, 459452
[http://dx.doi.org/10.1155/2014/459452] [PMID: 25162013]
[12]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[13]
El Khashab, I.H.; Abdelsalam, R.M.; Elbrairy, A.I.; Attia, A.S. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed. Pharmacother., 2019, 112, 108619
[http://dx.doi.org/10.1016/j.biopha.2019.108619] [PMID: 30797156]
[14]
Hemmati, M.; Zohoori, E.; Mehrpour, O.; Karamian, M.; Asghari, S.; Zarban, A.; Nasouti, R. Anti-atherogenic potential of jujube, saffron and barberry: anti-diabetic and antioxidant actions. EXCLI J., 2015, 14, 908-915.
[PMID: 26600752]
[15]
Medina, J.H.; Paladini, A.C.; Wolfman, C.; Levi de Stein, M.; Calvo, D.; Diaz, L.E.; Peña, C. Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol., 1990, 40(10), 2227-2231.
[http://dx.doi.org/10.1016/0006-2952(90)90716-X] [PMID: 2173925]
[16]
Anandhi, R.; Annadurai, T.; Anitha, T.S.; Muralidharan, A.R.; Najmunnisha, K.; Nachiappan, V.; Thomas, P.A.; Geraldine, P. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J. Physiol. Biochem., 2013, 69(2), 313-323.
[http://dx.doi.org/10.1007/s13105-012-0215-6] [PMID: 23104078]
[17]
El-Marasy, S.A.; El Awdan, S.A.; Abd-Elsalam, R.M. Protective role of chrysin on thioacetamide-induced hepatic encephalopathy in rats. Chem. Biol. Interact., 2019, 299, 111-119.
[http://dx.doi.org/10.1016/j.cbi.2018.11.021] [PMID: 30500344]
[18]
George, M.Y.; Esmat, A.; Tadros, M.G.; El-Demerdash, E. In vivo cellular and molecular gastroprotective mechanisms of chrysin; Emphasis on oxidative stress, inflammation and angiogenesis. Eur. J. Pharmacol., 2018, 818, 486-498.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.008] [PMID: 29126792]
[19]
Lirdprapamongkol, K.; Sakurai, H.; Abdelhamed, S.; Yokoyama, S.; Maruyama, T.; Athikomkulchai, S.; Viriyaroj, A.; Awale, S.; Yagita, H.; Ruchirawat, S.; Svasti, J.; Saiki, I. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol. Rep., 2013, 30(5), 2357-2364.
[http://dx.doi.org/10.3892/or.2013.2667] [PMID: 23969634]
[20]
Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther., 1977, 229(2), 327-336.
[PMID: 596982]
[21]
Budni, J.; Zomkowski, A.D.; Engel, D.; Santos, D.B.; dos Santos, A.A.; Moretti, M.; Valvassori, S.S.; Ornell, F.; Quevedo, J.; Farina, M.; Rodrigues, A.L. Folic acid prevents depressive-like behavior and hippocampal antioxidant imbalance induced by restraint stress in mice. Exp. Neurol., 2013, 240, 112-121.
[http://dx.doi.org/10.1016/j.expneurol.2012.10.024] [PMID: 23142187]
[22]
Moretti, M.; Budni, J.; Dos Santos, D.B.; Antunes, A.; Daufenbach, J.F.; Manosso, L.M. Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J. Mol. Neurosci., 2013, 49, 68-79.
[23]
Lin, C.Y.; Huang, C.S.; Huang, C.Y.; Yin, M.C. Anticoagulatory, antiinflammatory, and antioxidative effects of protocatechuic acid in diabetic mice. J. Agric. Food Chem., 2009, 57(15), 6661-6667.
[http://dx.doi.org/10.1021/jf9015202] [PMID: 19722571]
[24]
Mihara, M.; Uchiyama, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem., 1978, 86(1), 271-278.
[http://dx.doi.org/10.1016/0003-2697(78)90342-1] [PMID: 655387]
[25]
Ghadrdoost, B.; Vafaei, A.A.; Rashidy-Pour, A.; Hajisoltani, R.; Bandegi, A.R.; Motamedi, F.; Haghighi, S.; Sameni, H.R.; Pahlvan, S. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur. J. Pharmacol., 2011, 667(1-3), 222-229.
[http://dx.doi.org/10.1016/j.ejphar.2011.05.012] [PMID: 21616066]
[26]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[27]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[28]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[29]
Pieper, G.M.; Jordan, M.; Dondlinger, L.A.; Adams, M.B.; Roza, A.M. Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes, 1995, 44(8), 884-889.
[http://dx.doi.org/10.2337/diab.44.8.884] [PMID: 7621992]
[30]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[31]
Curtis, M.J.; Bond, R.A.; Spina, D.; Ahluwalia, A.; Alexander, S.P.; Giembycz, M.A.; Gilchrist, A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; Lawrence, A.J.; MacEwan, D.J.; Moon, L.D.; Wonnacott, S.; Weston, A.H.; McGrath, J.C. Experimental design and analysis and their reporting: New guidance for publication in BJP. Br. J. Pharmacol., 2015, 172(14), 3461-3471.
[http://dx.doi.org/10.1111/bph.12856] [PMID: 26114403]
[32]
Swaab, D.F.; Bao, A.M.; Lucassen, P.J. The stress system in the human brain in depression and neurodegeneration. Ageing Res. Rev., 2005, 4(2), 141-194.
[http://dx.doi.org/10.1016/j.arr.2005.03.003] [PMID: 15996533]
[33]
Liang, S.; Wang, T.; Hu, X.; Luo, J.; Li, W.; Wu, X.; Duan, Y.; Jin, F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 2015, 310, 561-577.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[34]
Ferraz, A.C.; Delattre, A.M.; Almendra, R.G.; Sonagli, M.; Borges, C.; Araujo, P.; Andersen, M.L.; Tufik, S.; Lima, M.M. Chronic ω-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav. Brain Res., 2011, 219(1), 116-122.
[http://dx.doi.org/10.1016/j.bbr.2010.12.028] [PMID: 21192985]
[35]
Maes, M.; Galecki, P.; Chang, Y.S.; Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 676-692.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: 20471444]
[36]
Vrzhesinskaya, O.A.; Kodentsova, V.M.; Beketova, N.A.; Pereverzeva, O.G.; Kosheleva, O.V.; Sidorova, Y.S.; Zorin, S.N.; Mazo, V.K. [Influence of combined vitamin deficiency on unconditioned reflexes and learning in growing rats]. Vopr. Pitan., 2015, 84(1), 31-37.
[PMID: 26402940]
[37]
Gawryluk, J.W.; Wang, J.F.; Andreazza, A.C.; Shao, L.; Young, L.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol., 2011, 14(1), 123-130.
[http://dx.doi.org/10.1017/S1461145710000805] [PMID: 20633320]
[38]
Reddy, S.; Rao, G.; Shetty, B.; Hn, G. Effects of Acorus calamus Rhizome Extract on the Neuromodulatory System in Restraint Stress Male Rats. Turk Neurosurg., 2015, 25(3), 425-431.
[PMID: 26037183]
[39]
Seo, J.S.; Park, J.Y.; Choi, J.; Kim, T.K.; Shin, J.H.; Lee, J.K.; Han, P.L. NADPH oxidase mediates depressive behavior induced by chronic stress in mice. J. Neurosci., 2012, 32(28), 9690-9699.
[http://dx.doi.org/10.1523/JNEUROSCI.0794-12.2012] [PMID: 22787054]
[40]
Malhotra, D.; Thimmulappa, R.; Navas-Acien, A.; Sandford, A.; Elliott, M.; Singh, A.; Chen, L.; Zhuang, X.; Hogg, J.; Pare, P.; Tuder, R.M.; Biswal, S. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am. J. Respir. Crit. Care Med., 2008, 178(6), 592-604.
[http://dx.doi.org/10.1164/rccm.200803-380OC] [PMID: 18556627]
[41]
Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P.O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta, 2009, 1788(4), 842-857.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.022] [PMID: 19061857]
[42]
Sharma, U.K.; Kumar, R.; Gupta, A.; Ganguly, R.; Pandey, A.K. Renoprotective effect of cinnamaldehyde in food color induced toxicity. Biotech., 2018, 8(4), 212.
[43]
Bettio, L.E.; Freitas, A.E.; Neis, V.B.; Santos, D.B.; Ribeiro, C.M.; Rosa, P.B.; Rodrigues, A.L. Rodrigues AL2. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol. Biochem. Behav., 2014, (127), 7-14.
[44]
Machado, D.G.; Cunha, M.P.; Neis, V.B.; Balen, G.O.; Colla, A.; Bettio, L.E.; Oliveira, A.; Pazini, F.L.; Dalmarco, J.B.; Simionatto, E.L.; Pizzolatti, M.G.; Rodrigues, A.L. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem., 2013, 136(2), 999-1005.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.028] [PMID: 23122155]
[45]
Roumestan, C.; Michel, A.; Bichon, F.; Portet, K.; Detoc, M.; Henriquet, C.; Jaffuel, D.; Mathieu, M. Anti-inflammatory properties of desipramine and fluoxetine. Respir. Res., 2007, 8, 35.
[http://dx.doi.org/10.1186/1465-9921-8-35] [PMID: 17477857]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Published on: 26 February, 2020
Page: [47 - 53]
Pages: 7
DOI: 10.2174/1871529X19666190618144440
Price: $65

Article Metrics

PDF: 19
HTML: 4