Green and Simple Synthesis of Silver Nanoparticles by Aqueous Extract of Perovskia abrotanoides: Characterization, Optimization and Antimicrobial Activity

Author(s): Somayeh Mirsadeghi*, Masoumeh F. Koudehi, Hamid R. Rajabi, Seied M. Pourmortazavi*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides.

Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM.

Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively.

Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.

Keywords: Silver NPs, Perovskia abrotanoides plant, green chemistry, biosynthesis methods, bactericidal concentration, antimicrobial effect.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1129 - 1137]
Pages: 9
DOI: 10.2174/1389201020666190618121218
Price: $65

Article Metrics

PDF: 11