Green and Simple Synthesis of Silver Nanoparticles by Aqueous Extract of Perovskia abrotanoides: Characterization, Optimization and Antimicrobial Activity

Author(s): Somayeh Mirsadeghi*, Masoumeh F. Koudehi, Hamid R. Rajabi, Seied M. Pourmortazavi*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides.

Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM.

Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively.

Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.

Keywords: Silver NPs, Perovskia abrotanoides plant, green chemistry, biosynthesis methods, bactericidal concentration, antimicrobial effect.

[1]
De, M.; Ghosh, P.S.; Rotello, V.M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241.
[http://dx.doi.org/10.1002/adma.200703183]
[2]
Lu, A-H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[3]
Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, 112(4), 2373-2433.
[http://dx.doi.org/10.1021/cr100449n] [PMID: 22204603]
[4]
Yu, A.K.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev., 2008, 77(3), 233.
[http://dx.doi.org/10.1070/RC2008v077n03ABEH003751]
[5]
García-Barrasa, J.; López-de-Luzuriaga, J.; Monge, M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Open Chem., 2011, 9, 7.
[http://dx.doi.org/10.2478/s11532-010-0124-x]
[6]
Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 2011, 37(2), 517-531.
[http://dx.doi.org/10.1016/j.envint.2010.10.012] [PMID: 21159383]
[7]
Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Ganjali, M.R.; Hajimirsadeghi, S.S.; Zahedi, M.M. Electrosynthesis and characterization of zinc tungstate nanoparticles. J. Mol. Struct., 2013, 1047(Suppl. C), 31-36.
[http://dx.doi.org/10.1016/j.molstruc.2013.04.050]
[8]
Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Rahimi-Nasrabadi, M.; Kohsari, I.J.S. Reactivity in Inorganic, M.-O.; Chemistry, N.-M., Electrosynthesis and characterization of copper oxalate nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42(5), 746-751.
[http://dx.doi.org/10.1080/15533174.2011.615784]
[9]
Shamsipur, M.; Pourmortazavi, S.M.; Roushani, M.; Hajimirsadeghi, S.S. Electrochemical preparation and thermal characterization of copper sulfide nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2014, 44(7), 951-958.
[http://dx.doi.org/10.1080/15533174.2013.797446]
[10]
Shamsipur, M.; Pourmortazavi, S.M.; Roushani, M.; Kohsari, I.; Hajimirsadeghi, S.S. Novel approach for electrochemical preparation of sulfur nanoparticles. Mikrochim. Acta, 2011, 173(3-4), 445-451.
[http://dx.doi.org/10.1007/s00604-011-0581-8]
[11]
Alvand, Z.M.; Rajabi, H.R.; Mirzaei, A.; Masoumiasl, A.; Sadatfaraji, H.J.M.S. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater. Sci. Eng. C, 2019, 98, 535-544.
[http://dx.doi.org/10.1016/j.msec.2019.01.010]
[12]
Rajabi, H.R.; Naghiha, R.; Kheirizadeh, M.; Sadatfaraji, H.; Mirzaei, A.; Alvand, Z.M.J.M.S. Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: Synthesis, characterization, and biological properties. Mater. Sci. Eng. C, 2017, 78, 1109-1118.
[http://dx.doi.org/10.1016/j.msec.2017.03.090] [PMID: 28575946]
[13]
Rajabi, H.R.; Deris, H.; Faraji, H.S.J.N.R. A facile and green biosynthesis of silver nanostructures by aqueous extract of Suaeda auminata after microwave assisted extraction. Nanochemistry Research, 2016, 1(2), 177-182.
[14]
Khan, F.A.; Zahoor, M.; Jalal, A.; Rahman, A.U. Green synthesis of silver nanoparticles by using Ziziphus nummularia leaves aqueous extract and their biological activities. J. Nanomater., 2016, 2016, 21.
[http://dx.doi.org/10.1155/2016/8026843]
[15]
Bhattacharya, R.; Mukherjee, P. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev., 2008, 60(11), 1289-1306.
[http://dx.doi.org/10.1016/j.addr.2008.03.013] [PMID: 18501989]
[16]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[17]
Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci., 2012, 13(1), 466-476.
[http://dx.doi.org/10.3390/ijms13010466] [PMID: 22312264]
[18]
Poulin, M.B.; Lowary, T.L. Methods to study the biosynthesis of bacterial furanosides. Methods Enzymol., 2010, 478, 389-411.
[http://dx.doi.org/10.1016/S0076-6879(10)78019-8] [PMID: 20816491]
[19]
Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Md Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 2015, 20(9), 16540-16565.
[http://dx.doi.org/10.3390/molecules200916540] [PMID: 26378513]
[20]
Majeed, S.; Abdullah, M.S.; Dash, G.K.; Ansari, M.T.; Nanda, A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med., 2016, 14(8), 615-620.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3] [PMID: 27608951]
[21]
Rahimi-Nasrabadi, E.; Pourmortazavi, S.M.; Shandiz, S.A.S.; Ahmadi, F.; Batooli, H. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat. Product. Res., 2014, 28(14), 1964-1969.
[PMID: 24867679]
[22]
Mozaffarian, V. Dictionary of Iranian plant Names. Tehran, F. M. a., 1996, 400. (in Persian).
[23]
Mahboubi, M.; Kazempour, N. The antimicrobial activity of essential oil from Perovskia abrotanoides karel and its main components. Indian J. Pharm. Sci., 2009, 71(3), 343-347.
[24]
Moallem, S.A.; Niapour, M. Study of embryotoxicity of Perovskia abrotanoides, an adulterant in folk-medicine, during organogenesis in mice. J. Ethnopharmacol., 2008, 117(1), 108-114.
[http://dx.doi.org/10.1016/j.jep.2008.01.020] [PMID: 18337034]
[25]
Ballabh, B.; Chaurasia, O.P.; Ahmed, Z.; Singh, S.B. Traditional medicinal plants of cold desert Ladakh-used against kidney and urinary disorders. J. Ethnopharmacol., 2008, 118(2), 331-339.
[http://dx.doi.org/10.1016/j.jep.2008.04.022] [PMID: 18550306]
[26]
Sairafianpour, M.; Christensen, J.; Staerk, D.; Budnik, B.A.; Kharazmi, A.; Bagherzadeh, K.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: New source of tanshinones. J. Nat. Prod., 2001, 64(11), 1398-1403.
[http://dx.doi.org/10.1021/np010032f] [PMID: 11720520]
[27]
Esmaeili, S.; Naghibi, F.; Mosaddegh, M.; Sahranavard, S.; Ghafari, S.; Abdullah, N.R. Screening of antiplasmodial properties among some traditionally used Iranian plants. J. Ethnopharmacol., 2009, 121(3), 400-404.
[http://dx.doi.org/10.1016/j.jep.2008.10.041] [PMID: 19059470]
[28]
Rustaiyan, A.; Masoudi, S.; Ameri, N.; Samiee, K.; Monfared, A. Volatile constituents of Ballota aucheri Boiss., Stachys benthamiana Boiss. and Perovskia abrotanoides Karel. growing wild in Iran. J. Essent. Oil Res., 2006, 18(2), 218-221.
[http://dx.doi.org/10.1080/10412905.2006.9699070]
[29]
Ashraf, S.N.; Zubair, M.; Rizwan, K.; Tareen, R.B.; Rasool, N.; Zia-ul-Haq, M.; Ercisli, S. Compositional studies and biological activities of Perovskia abrotanoides Kar. oils. Biol. Res., 2014, 47, 12.
[PMID: 25052892]
[30]
Morteza-Semnani, K. The essential oil composition of Perovskia abrotanoides from Iran. Pharm. Biol., 2004, 42(3), 214-216.
[http://dx.doi.org/10.1080/13880200490514078]
[31]
Zia-Ul-Haq, M.; Ahmad, S.; Calani, L.; Mazzeo, T.; Del Rio, D.; Pellegrini, N.; De Feo, V. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules, 2012, 17(9), 10306-10321.
[http://dx.doi.org/10.3390/molecules170910306] [PMID: 22932212]
[32]
Siddhuraju, P.; Mohan, P.; Becker, K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem., 2002, 79(1), 61-67.
[http://dx.doi.org/10.1016/S0308-8146(02)00179-6]
[33]
Thirugnanasampandan, R.; Mahendran, G.; Bai, V.N. Antioxidant properties of some medicinal Aristolochiaceae species. Afr. J. Biotechnol., 2008, 7(4)
[34]
Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Davoudi-Dehaghani, A.A.; Hajimirsadeghi, S.S.; Zahedi, M.M. Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. CrystEngComm, 2013, 15(20), 4077-4086.
[http://dx.doi.org/10.1039/c3ce26930b]
[35]
Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1249-1254.
[http://dx.doi.org/10.1016/j.saa.2014.10.010] [PMID: 25456666]
[36]
Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Khalilian-Shalamzari, M. Facile chemical synthesis and structure characterization of copper molybdate nanoparticles. J. Mol. Struct., 2015, 1083, 229-235.
[http://dx.doi.org/10.1016/j.molstruc.2014.12.017]
[37]
Pourmortazavi, S.M.; Marashianpour, Z.; Karimi, M.S.; Mohammad-Zadeh, M. Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles. J. Mol. Struct., 2015, 1099(Suppl. C), 232-238.
[http://dx.doi.org/10.1016/j.molstruc.2015.06.044]
[38]
Shamsipur, M.; Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Roushani, M. Applying Taguchi robust design to the optimization of synthesis of barium carbonate nanorods via direct precipitation. Colloids Surfac. A Physicochem. Engin. Aspects., 2013, 423, 35-41.
[http://dx.doi.org/10.1016/j.colsurfa.2013.01.042]
[39]
Shahidzadeh, M.; Shabihi, P.; Pourmortazavi, S.M. Sonochemical preparation of copper (II) chromite nanocatalysts and particle size optimization via taguchi method. J. Inorg. Organomet. Polym. Mater., 2015, 25(4), 986-994.
[http://dx.doi.org/10.1007/s10904-015-0173-x]
[40]
Notes, O. M. microbiologyinfo.com
[41]
Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Rahimi-Nasrabadi, M. Applying the Taguchi robust design to optimization of the experimental conditions for synthesis of lead chromate nanorods. J. Dispers. Sci. Technol., 2012, 33(2), 254-257.
[http://dx.doi.org/10.1080/01932691.2011.561173]
[42]
Bayat, Y.; Pourmortazavi, S.M.; Iravani, H.; Ahadi, H. Statistical optimization of supercritical carbon dioxide antisolvent process for preparation of HMX nanoparticles. J. Supercrit. Fluids, 2012, 72, 248-254.
[http://dx.doi.org/10.1016/j.supflu.2012.09.010]
[43]
Pourmortazavi, S.M.; Rahimi-Nasrabadi, M.; Aghazadeh, M.; Ganjali, M.R.; Karimi, M.S.; Norouzi, P. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles. J. Mol. Struct., 2017, 1150, 411-418.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.008]
[44]
Bayat, Y.; Hajimirsadeghi, S.S.; Pourmortazavi, S.M. Statistical Optimization of Reaction Parameters for the Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Org. Process Res. Dev., 2011, 15(4), 810-816.
[http://dx.doi.org/10.1021/op200056j]
[45]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract. Mater. Lett., 2012, 67(1), 64-66.
[http://dx.doi.org/10.1016/j.matlet.2011.09.023]
[46]
Xu, Z.; Hou, Y.; Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc., 2007, 129(28), 8698-8699.
[http://dx.doi.org/10.1021/ja073057v] [PMID: 17590000]
[47]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[48]
Cruz, D.; Falé, P.L.; Mourato, A.; Vaz, P.D.; Serralheiro, M.L.; Lino, A.R.L. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces, 2010, 81(1), 67-73.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.025] [PMID: 20655710]
[49]
Kohsari, I.; Mohammad-Zadeh, M.; Minaeian, S.; Rezaee, M.; Barzegari, A.; Shariatinia, Z.; Koudehi, M.F.; Mirsadeghi, S.; Pourmortazavi, S.M. In vitro antibacterial property assessment of silver nanoparticles synthesized by Falcaria vulgaris aqueous extract against MDR bacteria. J. Sol-Gel Sci. Technol., 2019, 90(2), 380-389.
[http://dx.doi.org/10.1007/s10971-019-04961-0]
[50]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 11
Year: 2020
Published on: 20 September, 2020
Page: [1129 - 1137]
Pages: 9
DOI: 10.2174/1389201020666190618121218
Price: $65

Article Metrics

PDF: 15
HTML: 1