Review Article

Bromodomain-Containing Protein 4: A Druggable Target

Author(s): Yingying Shi, Jingwen Liu, Yuanyuan Zhao, Jiaoxian Cao, Yiming Li* and Fujiang Guo*

Volume 20, Issue 15, 2019

Page: [1517 - 1536] Pages: 20

DOI: 10.2174/1574885514666190618113519

Price: $65

Abstract

Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extraterminal family. BRD4 inhibitors can regulate acetylated lysine and form protein complexes that initiate transcriptional programs as an epigenetic regulator of the histone code. BRD4 was initially considered to be one of the most promising targets for combating malignant tumors. However, many recent studies have shown that BRD4 plays a crucial role in various kinds of diseases, including cancer, coronary heart disease, neurological disorder, and obesity. Currently, several BRD4 inhibitors are undergoing clinical trials. A search for new BRD4 inhibitors appears to be of great utility for developing novel drugs. In this mini-review, we highlight the inhibitors of BRD4 from natural products and synthesized sources, as well as their applications in cancer, glucolipid metabolism, inflammation, neuronal stimulation activation, human immunodeficiency virus and renal fibrosis.

Keywords: Bromodomain-containing protein 4, small molecule inhibitors, pharmacology, tumor, coronary heart disease, natural products, synthetic compounds.

Graphical Abstract
[1]
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325(5942): 834-40.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[2]
Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 1998; 20(8): 615-26.
[http://dx.doi.org/10.1002/(SICI)1521-1878(199808)20:8<615:AID-BIES4>3.0.CO;2-H] [PMID: 9780836]
[3]
Ganai SA. Histone deacetylase inhibitors modulating non-epigenetic players: The novel molecular targets for therapeutic intervention. Curr Drug Targets 2016; 19(6): 593-601.
[http://dx.doi.org/10.2174/1389450117666160527143257] [PMID: 27231104]
[4]
Peng L, Seto E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol 2011; 206: 39-56.
[http://dx.doi.org/10.1007/978-3-642-21631-2_3] [PMID: 21879445]
[5]
Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007; 1(1): 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[6]
Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 2007; 17(3): 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[7]
He XM, Lin L, Li SY. HDACs and HDAC inhibitors in colorectal cancer. Linchuang Zhongliuxue Zazhi 2009; 14(03): 270-3.
[8]
Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene 2007; 26(37): 5420-32.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[9]
Filippakopoulos P, Knapp S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13(5): 337-56.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[10]
Sanchez R, Zhou MM. The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 2009; 12(5): 659-65.
[PMID: 19736624]
[11]
Müller S, Lingard H, Knapp S. Selective inhibition of acetyl-lysine effector domains of the bromodomain family in oncology. Nuclear Signaling Pathways and Targeting Transcription in Cancer 2014; pp. 279-98.
[http://dx.doi.org/10.1007/978-1-4614-8039-6_11]
[12]
Ember SWJ, Zhu JY, Olesen SH, et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem Biol 2014; 9(5): 1160-71.
[http://dx.doi.org/10.1021/cb500072z] [PMID: 24568369]
[13]
Lee JE, Park YK, Park S, et al. Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat Commun 2017; 8(1): 2217-28.
[http://dx.doi.org/10.1038/s41467-017-02403-5] [PMID: 29263365]
[14]
Sakurai N, Inamochi Y, Inoue T, et al. BRD4 regulates adiponectin gene induction by recruiting the P-TEFb complex to the transcribed region of the gene. Sci Rep 2017; 7(1): 11962.
[http://dx.doi.org/10.1038/s41598-017-12342-2] [PMID: 28931940]
[15]
Valor LM, Pulopulos MM, Jimenez-Minchan M, Olivares R, Lutz B, Barco A. Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J Neurosci 2011; 31(5): 1652-63.
[http://dx.doi.org/10.1523/JNEUROSCI.4737-10.2011] [PMID: 21289174]
[16]
French CA. Small-molecule targeting of BET proteins in cancer. Adv Cancer Res 2016; 131: 21-58.
[http://dx.doi.org/10.1016/bs.acr.2016.04.001] [PMID: 27451123]
[17]
Jahagirdar R, Zhang H, Azhar S, et al. A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice. Atherosclerosis 2014; 236(1): 91-100.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.06.008] [PMID: 25016363]
[18]
Nicholls SJ, Gordon A, Johannson J, et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc Drugs Ther 2012; 26(2): 181-7.
[http://dx.doi.org/10.1007/s10557-012-6373-5] [PMID: 22349989]
[19]
Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468(7327): 1119-23.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[20]
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22(2): 153-69.
[http://dx.doi.org/10.1515/rns.2011.018] [PMID: 21476939]
[21]
Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012; 12(7): 465-77.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[22]
Fu LL, Tian M, Li X, et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 2015; 6(8): 5501-16.
[http://dx.doi.org/10.18632/oncotarget.3551] [PMID: 25849938]
[23]
Filippakopoulos P, Picaud S, Mangos M, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149(1): 214-31.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[24]
Florence B, Faller DV. You bet-cha: a novel family of transcriptional regulators. Front Biosci 2001; 6(1): D1008-18.
[http://dx.doi.org/10.2741/Florence] [PMID: 11487468]
[25]
Dey A, Ellenberg J, Farina A, et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 2000; 20(17): 6537-49.
[http://dx.doi.org/10.1128/MCB.20.17.6537-6549.2000] [PMID: 10938129]
[26]
Wang R, Li Q, Helfer CM, Jiao J, You J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J Biol Chem 2012; 287(14): 10738-52.
[http://dx.doi.org/10.1074/jbc.M111.323493] [PMID: 22334664]
[27]
Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 2009; 20(23): 4899-909.
[http://dx.doi.org/10.1091/mbc.e09-05-0380] [PMID: 19812244]
[28]
Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 2014; 54(5): 728-36.
[http://dx.doi.org/10.1016/j.molcel.2014.05.016] [PMID: 24905006]
[29]
Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23(3): 297-305.
[http://dx.doi.org/10.1016/j.molcel.2006.06.014] [PMID: 16885020]
[30]
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7(8): 557-67.
[http://dx.doi.org/10.1038/nrm1981] [PMID: 16936696]
[31]
Cherrier T, Le Douce V, Eilebrecht S, et al. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 2013; 110(31): 12655-60.
[http://dx.doi.org/10.1073/pnas.1220136110] [PMID: 23852730]
[32]
Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19(4): 535-45.
[http://dx.doi.org/10.1016/j.molcel.2005.06.029] [PMID: 16109377]
[33]
Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005; 19(4): 523-34.
[http://dx.doi.org/10.1016/j.molcel.2005.06.027] [PMID: 16109376]
[34]
Chen R, Yik JH, Lew QJ, Chao SH. Brd4 and HEXIM1: multiple roles in P-TEFb regulation and cancer. BioMed Res Int 2014; 2014232870
[http://dx.doi.org/10.1155/2014/232870] [PMID: 24592384]
[35]
Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature 2010; 468(7327): 1067-73.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[36]
Xiang T, Bai JY, She C, Yu DJ, Zhou XZ, Zhao TL. Bromodomain protein BRD4 promotes cell proliferation in skin squamous cell carcinoma. Cell Signal 2018; 42: 106-13.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.010] [PMID: 29050985]
[37]
Wang L, Wu X, Huang P, et al. JQ1, a small molecule inhibitor of BRD4, suppresses cell growth and invasion in oral squamous cell carcinoma. Oncol Rep 2016; 36(4): 1989-96.
[http://dx.doi.org/10.3892/or.2016.5037] [PMID: 27573714]
[38]
French CA. NUT midline carcinoma. Cancer Genet Cytogenet 2010; 203(1): 16-20.
[http://dx.doi.org/10.1016/j.cancergencyto.2010.06.007] [PMID: 20951314]
[39]
French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 2003; 63(2): 304-7.
[PMID: 12543779]
[40]
Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med 2011; 13: e29-42.
[http://dx.doi.org/10.1017/S1462399411001992] [PMID: 21933453]
[41]
Mirguet O, Gosmini R, Toum J, et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 2013; 56(19): 7501-15.
[http://dx.doi.org/10.1021/jm401088k] [PMID: 24015967]
[42]
Zuber J, Shi J, Wang E, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478(7370): 524-8.
[http://dx.doi.org/10.1038/nature10334] [PMID: 21814200]
[43]
Albrecht BK, Gehling VS, Hewitt MC, et al. Identification of a benzoisoxazoloazepine inhibitor (CPI-0610) of the bromodomain and extra-terminal (BET) family as a candidate for human clinical trials. J Med Chem 2016; 59(4): 1330-9.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01882] [PMID: 26815195]
[44]
Siu KT, Ramachandran J, Yee AJ, et al. Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia 2017; 31(8): 1760-9.
[http://dx.doi.org/10.1038/leu.2016.355] [PMID: 27890933]
[45]
Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002; 297(5578): 63-4.
[http://dx.doi.org/10.1126/science.1073096] [PMID: 12098689]
[46]
Asangani IA, Dommeti VL, Wang X, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510(7504): 278-82.
[http://dx.doi.org/10.1038/nature13229] [PMID: 24759320]
[47]
Mertz JA, Conery AR, Bryant BM, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108(40): 16669-74.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[48]
Lockwood WW, Zejnullahu K, Bradner JE, Varmus H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 2012; 109(47): 19408-13.
[http://dx.doi.org/10.1073/pnas.1216363109] [PMID: 23129625]
[49]
Villar-Prados A, Wu SY, Court KA, et al. Predicting novel therapies and targets: Regulation of Notch3 by the bromodomain protein BRD4. Mol Cancer Ther 2019; 18(2): 421-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0365] [PMID: 30420565]
[50]
Zhang Z, Ma P, Jing Y, et al. BET bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating foxm1. Theranostics 2016; 6(2): 219-30.
[http://dx.doi.org/10.7150/thno.13178] [PMID: 26877780]
[51]
Zhu L, Ding X. Molecular design of Stat3-derived peptide selectivity between BET proteins Brd2 and Brd4 in ovarian cancer. J Mol Recognit 2018; 31(2)e2679
[http://dx.doi.org/10.1002/jmr.2679] [PMID: 28983974]
[52]
McLure KG, Gesner EM, Tsujikawa L, et al. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One 2013; 8(12) e83190
[http://dx.doi.org/10.1371/journal.pone.0083190] [PMID: 24391744]
[53]
Gosmini R, Nguyen VL, Toum J, et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 2014; 57(19): 8111-31.
[http://dx.doi.org/10.1021/jm5010539] [PMID: 25249180]
[54]
Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92(1): 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[55]
Zhang Y, Gu M, Cai W, et al. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Sci Rep 2016; 6(1): 19288.
[http://dx.doi.org/10.1038/srep19288] [PMID: 28720770]
[56]
Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem 2012; 287(34): 28840-51.
[http://dx.doi.org/10.1074/jbc.M112.359505] [PMID: 22645123]
[57]
Bandukwala HS, Gagnon J, Togher S, et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci USA 2012; 109(36): 14532-7.
[http://dx.doi.org/10.1073/pnas.1212264109] [PMID: 22912406]
[58]
Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 2013; 190(7): 3670-8.
[http://dx.doi.org/10.4049/jimmunol.1202838] [PMID: 23420887]
[59]
Eskandarpour M, Alexander R, Adamson P, Calder VL. Pharmacological inhibition of bromodomain proteins suppresses retinal inflammatory disease and downregulates retinal Th17 cells. J Immunol 2017; 198(3): 1093-103.
[http://dx.doi.org/10.4049/jimmunol.1600735] [PMID: 28039300]
[60]
Green EM, Gozani O. Everybody’s welcome: The big tent approach to epigenetic drug discovery. Drug Discov Today Ther Strateg 2012; 9(2-3): e75-81.
[http://dx.doi.org/10.1016/j.ddstr.2011.08.002] [PMID: 23505394]
[61]
Li J, Ma J, Meng G, et al. BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Res (Amst) 2016; 17(2): 212-21.
[http://dx.doi.org/10.1016/j.scr.2016.07.006] [PMID: 27591477]
[62]
Rvx 208. Drugs R D 2011; 11(2): 207-13.
[http://dx.doi.org/10.2165/11595140-000000000-00000] [PMID: 21679009]
[63]
Li Z, Guo J, Wu Y, Zhou Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 2013; 41(1): 277-87.
[http://dx.doi.org/10.1093/nar/gks976] [PMID: 23087374]
[64]
Zhu J, Gaiha GD, John SP, et al. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2012; 2(4): 807-16.
[http://dx.doi.org/10.1016/j.celrep.2012.09.008] [PMID: 23041316]
[65]
Loeffler I, Wolf G. Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 2014; 29(Suppl. 1): i37-45.
[http://dx.doi.org/10.1093/ndt/gft267] [PMID: 24030832]
[66]
Zhou B, Mu J, Gong Y, et al. Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 2017; 11: 390-402.
[http://dx.doi.org/10.1016/j.redox.2016.12.031] [PMID: 28063381]
[67]
Vázquez R, Riveiro ME, Astorgues-Xerri L, et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 2017; 8(5): 7598-613.
[http://dx.doi.org/10.18632/oncotarget.13814] [PMID: 27935867]
[68]
Stathis A, Zucca E, Bekradda M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov 2016; 6(5): 492-500.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1335] [PMID: 26976114]
[69]
Lu P, Qu X, Shen Y, et al. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Sci Rep 2016; 6: 24100-10.
[http://dx.doi.org/10.1038/srep24100] [PMID: 27067814]
[70]
Boi M, Todaro M, Vurchio V, et al. AIRC 5xMille consortium ‘genetics-driven targeted management of lymphoid malignancies’. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes. Oncotarget 2016; 7(48): 79637-53.
[http://dx.doi.org/10.18632/oncotarget.12876] [PMID: 27793034]
[71]
Devaiah BN, Lewis BA, Cherman N, et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 2012; 109(18): 6927-32.
[http://dx.doi.org/10.1073/pnas.1120422109] [PMID: 22509028]
[72]
Moros A, Rodríguez V, Saborit-Villarroya I, et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 2014; 28(10): 2049-59.
[http://dx.doi.org/10.1038/leu.2014.106] [PMID: 24721791]
[73]
Picaud S, Leonards K, Lambert JP, et al. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Sci Adv 2016; 2(10)e1600760
[http://dx.doi.org/10.1126/sciadv.1600760] [PMID: 27757418]
[74]
Roberts TC, Etxaniz U, Dall’Agnese A, et al. BRD3 and BRD4 BET bromodomain proteins differentially regulate skeletal myogenesis. Sci Rep 2017; 7(1): 6153-66.
[http://dx.doi.org/10.1038/s41598-017-06483-7] [PMID: 28733670]
[75]
Seal J, Lamotte Y, Donche F, et al. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 2012; 22(8): 2968-72.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.041] [PMID: 22437115]
[76]
Mark AD, Rab KP, Antje D, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature 2013; 478(7370): 529-33.
[77]
Chaidos A, Caputo V, Gouvedenou K, et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 2014; 123(5): 697-705.
[http://dx.doi.org/10.1182/blood-2013-01-478420] [PMID: 24335499]
[78]
Picaud S, Da Costa D, Thanasopoulou A, et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Cancer Res 2013; 73(11): 3336-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3292] [PMID: 23576556]
[79]
Fish PV, Filippakopoulos P, Bish G, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem 2012; 55(22): 9831-7.
[http://dx.doi.org/10.1021/jm3010515] [PMID: 23095041]
[80]
Liu L, Zhu Y, Liu Z, et al. Synthesis and biological evaluation of N-(3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-7-yl)benzenesulfo- namide derivatives as new BET bromodomain inhibitors for anti-hematologic malignancies activities. Mol Divers 2017; 21(1): 125-36.
[http://dx.doi.org/10.1007/s11030-016-9707-6] [PMID: 27858214]
[81]
Wyce A, Ganji G, Smitheman KN, et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS One 2013; 8(8) e72967
[http://dx.doi.org/10.1371/journal.pone.0072967] [PMID: 24009722]
[82]
Gilham D, Wasiak S, Tsujikawa LM, et al. RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 2016; 247: 48-57.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.036] [PMID: 26868508]
[83]
Picaud S, Wells C, Felletar I, et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci USA 2013; 110(49): 19754-9.
[http://dx.doi.org/10.1073/pnas.1310658110] [PMID: 24248379]
[84]
Nicholls SJ, Gordon A, Johansson J, et al. Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 2011; 57(9): 1111-9.
[http://dx.doi.org/10.1016/j.jacc.2010.11.015] [PMID: 21255957]
[85]
Kharenko OA, Gesner EM, Patel RG, et al. RVX-297- a novel BD2 selective inhibitor of BET bromodomains. Biochem Biophys Res Commun 2016; 477(1): 62-7.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.021] [PMID: 27282480]
[86]
Jahagirdar R, Attwell S, Marusic S, et al. RVX-297, a BET bromodomain inhibitor, has therapeutic effects in preclinical models of acute inflammation and autoimmune disease. Mol Pharmacol 2017; 92(6): 694-706.
[http://dx.doi.org/10.1124/mol.117.110379] [PMID: 28974538]
[87]
Steegmaier M, Hoffmann M, Baum A, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 2007; 17(4): 316-22.
[http://dx.doi.org/10.1016/j.cub.2006.12.037] [PMID: 17291758]
[88]
Chen L, Yap JL, Yoshioka M, et al. Brd4 structure-activity relationships of dual PIK1 kinase/BRD4 bromodomain inhibitor BI-2536. ACS Med Chem Lett 2015; 6(7): 764-9.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00084] [PMID: 26191363]
[89]
Ouyang L, Zhang L, Liu J, et al. Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J Med Chem 2017; 60(24): 9990-10012.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00275] [PMID: 29172540]
[90]
Sarthy A, Li L, Albert DH, et al. Abstract 4718: ABBV-075, a novel BET family bromodomain inhibitor, represents a promising therapeutic agent for a broad spectrum of cancer indications. Cancer Res 2016; 76(14)(Suppl.): 4718-8.
[91]
Faivre EJ, Wilcox DM, Hessler P, et al. Abstract 4694: ABBV-075, a novel BET family inhibitor, disrupts critical transcription programs that drive prostate cancer growth to induce potent anti-tumor activity in vitro and in vivo. Cancer Res 2016; 76(14)
[92]
Faivre EJ, Wilcox DM, Hessler P, et al. Abstract 4694: ABBV-075, a novel BET family inhibitor, disrupts critical transcription programs that drive prostate cancer growth to induce potent anti-tumor activity in vitro and in vivo. Cancer Res 2016; 76(14)(Suppl.): 4694-4.
[93]
McDaniel KF, Wang L, Soltwedel T, et al. Discovery of N-(4-(2,4-difluorophenoxy)-3-(6-methyl-7-oxo-6,7-dihydro-1h-pyrrolo[2,3-c]pyridin-4-yl)phenyl)ethanesulfonamide (ABBV-075/Mivebresib), a potent and orally available bromodomain and extraterminal domain (BET) family bromodomain inhibitor. J Med Chem 2017; 60(20): 8369-84.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00746] [PMID: 28949521]
[94]
Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 2017; 13(5): 514-21.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[95]
Saenz DT, Fiskus W, Qian Y, et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 2017; 31(9): 1951-61.
[http://dx.doi.org/10.1038/leu.2016.393] [PMID: 28042144]
[96]
Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 2015; 22(6): 755-63.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[97]
Raina K, Lu J, Qian Y, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA 2016; 113(26): 7124-9.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[98]
Winter GE, Buckley DL, Paulk J, et al. Selective target protein degradation via phthalimide conjugation. Science 2015; 348(6241): 1376-81.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[99]
Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015; 10(8): 1770-7.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[100]
Chan KH, Zengerle M, Testa A, Ciulli A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J Med Chem 2018; 61(2): 504-13.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01912] [PMID: 28595007]
[101]
Qin C, Hu Y, Zhou B, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J Med Chem 2018; 61(15): 6685-704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[102]
Kim YH, Kim M, Yoo M, et al. A natural compound, aristoyagonine, is identified as a potent bromodomain inhibitor by mid-throughput screening. Biochem Biophys Res Commun 2018; 503(2): 882-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.091] [PMID: 29928885]
[103]
Yu L, Ding W, Wang Q, et al. Induction of cryptic bioactive 2,5-diketopiperazines in fungus Penicillium sp. DT-F29 by microbial co-culture. Tetrahedron 2017; 73(7): 907-14.
[http://dx.doi.org/10.1016/j.tet.2016.12.077]
[104]
Cheng X, Zhou B, Liu H, Huo C, Ding W. One new indolocarbazole alkaloid from the Streptomyces sp. A22. Nat Prod Res 2018; 32(21): 2583-8.
[http://dx.doi.org/10.1080/14786419.2018.1428595] [PMID: 29355042]
[105]
Lucas X, Wohlwend D, Hügle M, et al. 4-Acyl pyrroles: mimicking acetylated lysines in histone code reading. Angew Chem Int Ed Engl 2013; 52(52): 14055-9.
[http://dx.doi.org/10.1002/anie.201307652] [PMID: 24272870]
[106]
Raj U, Kumar H, Varadwaj PK. Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors. J Biomol Struct Dyn 2017; 35(11): 2351-62.
[http://dx.doi.org/10.1080/07391102.2016.1217276] [PMID: 27494802]
[107]
Lee JS, Lee MS, Oh WK, Sul JY. Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 2009; 32(8): 1427-32.
[http://dx.doi.org/10.1248/bpb.32.1427] [PMID: 19652385]
[108]
Banerjee T, Valacchi G, Ziboh VA, van der Vliet A. Inhibition of TNFalpha-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-kappaB activation in A549 cells. Mol Cell Biochem 2002; 238(1-2): 105-10.
[http://dx.doi.org/10.1023/A:1019963222510] [PMID: 12349896]
[109]
Banerjee T, Van der Vliet A, Ziboh VA. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids 2002; 66(5-6): 485-92.
[http://dx.doi.org/10.1054/plef.2002.0387] [PMID: 12144868]
[110]
Prieto-Martínez FD, Medina-Franco JL. Flavonoids as putative epi-modulators: Insight into their binding mode with BRD4 bromodomains using molecular docking and dynamics. Biomolecules 2018; 8(3): 1-18.
[http://dx.doi.org/10.3390/biom8030061] [PMID: 30041464]
[111]
Takeshi Y, Kazunori M, Andreas O, et al. Structural and thermodynamic characterization of the binding of isoliquiritigenin to the first bromodomain of BRD4. FEBS J 2018.
[112]
Peng F, Du Q, Peng C, et al. Review: The pharmacology of isoliquiritigenin. Phytother Res 2015; 29(7): 969-77.
[http://dx.doi.org/10.1002/ptr.5348] [PMID: 25907962]
[113]
Ning S, Xiao M, Zhu D, et al. Isoliquiritigenin attenuates MiR-21 expression via induction of PIAS3 in breast cancer cells. RSC Advances 2017; 7(29): 18085-92.
[http://dx.doi.org/10.1039/C6RA25511F]
[114]
Kanazawa M, Satomi Y, Mizutani Y, et al. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol 2003; 43(5): 580-6.
[http://dx.doi.org/10.1016/S0302-2838(03)00090-3] [PMID: 12706007]
[115]
Ii T, Satomi Y, Katoh D, et al. Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett 2004; 207(1): 27-35.
[http://dx.doi.org/10.1016/j.canlet.2003.10.023] [PMID: 15050731]
[116]
Ma J, Fu NY, Pang DB, Wu WY, Xu AL. Apoptosis induced by isoliquiritigenin in human gastric cancer MGC-803 cells. Planta Med 2001; 67(8): 754-7.
[http://dx.doi.org/10.1055/s-2001-18361] [PMID: 11731922]
[117]
Athar M, Back JH, Tang X, et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 2007; 224(3): 274-83.
[http://dx.doi.org/10.1016/j.taap.2006.12.025] [PMID: 17306316]
[118]
Pavan AR, Silva GD, Jornada DH, et al. Unraveling the anticancer effect of curcumin and resveratrol. Nutrients 2016; 8(11) E628
[http://dx.doi.org/10.3390/nu8110628] [PMID: 27834913]
[119]
Dutra LA, Heidenreich D, Silva GDBD, Man Chin C, Knapp S, Santos JLD. Dietary compound resveratrol is a pan-BET bromodomain inhibitor. Nutrients 2017; 9(11): 1172-9.
[http://dx.doi.org/10.3390/nu9111172] [PMID: 29077030]
[120]
Ding H, Zhang D, Zhou B, Ma Z. Inhibitors of BRD4 protein from a marine-derived fungus Alternaria sp. NH-F6. Mar Drugs 2017; 15(3): 76-89.
[http://dx.doi.org/10.3390/md15030076] [PMID: 28300771]
[121]
Wu X, Chen Z, Ding W, Liu Y, Ma Z. Chemical constituents of the fermentative extracts of marine fungi Phoma sp. CZD-F11 and Aspergillus sp. CZD-F18 from Zhoushan Archipelago, China. Nat Prod Res 2018; 32(13): 1562-6.
[http://dx.doi.org/10.1080/14786419.2017.1389929] [PMID: 29082752]
[122]
Ma Q, Ding W, Chen Z, Ma Z. Bisamides and rhamnosides from mangrove actinomycete Streptomyces sp. SZ-A15. Nat Prod Res 2018; 32(7): 761-6.
[http://dx.doi.org/10.1080/14786419.2017.1315578] [PMID: 28438038]
[123]
Park SH, Kim DS, Kim WG, et al. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 2004; 61(22): 2878-85.
[http://dx.doi.org/10.1007/s00018-004-4341-3] [PMID: 15558216]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy