The Ultrashort Peptide OW: A New Antibiotic Adjuvant

Author(s): Yara Al Tall*, Ahmad Abualhaijaa, Mohammed T. Qaoud, Mohammad Alsaggar, Majed Masadeh, Karem H. Alzoubi.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The over use of current antibiotics and low discovery rate of the new ones are leading to rapid development of multidrug-resistant pathogens worldwide. Antimicrobial peptides have shown promising results against multidrug-resistant bacteria.

Objective: To investigate the antimicrobial activity of a new ultrashort hexapeptide (OW).

Methods: The OW hexapeptide was designed and tested against different strains of bacteria with different levels of sensitivity. Bacterial susceptibility assays were performed according to the guidelines of the Clinical and Laboratory Institute (CLSI). The synergistic studies were then conducted using the Checkerboard assay. This was followed by checking the hemolytic effect of the hexapeptide against human blood cells and Human Embryonic Kidney cell line (HEK293). Finally, the antibiofilm activities of the hexapeptide were studied using the Biofilm Calgary method.

Results: Synergistic assays showed that OW has synergistic effects with antibiotics of different mechanisms of action. It showed an outstanding synergism with Rifampicin against methicillin resistant Staphylococcus aureus; ΣFIC value was 0.37, and the MIC value of Rifampicin was decreased by 85%. OW peptide also displayed an excellent synergism with Ampicillin against multidrug-resistant Pseudomonas aeruginosa, with ΣFIC value of less than 0.38 and a reduction of more than 96% in the MIC value of Ampicillin.

Conclusion: This study introduced a new ultrashort peptide (OW) with promising antimicrobial potential in the management of drug-resistant infectious diseases as a single agent or in combination with commonly used antibiotics. Further studies are needed to investigate the exact mechanism of action of these peptides.

Keywords: Antimicrobial resistance, ultrashort peptide, antibiotic adjuvant, synergism, MIC, hemolytic assay.

[1]
Review on Antimicrobial Resistance Tackling a crisis for the health and wealth of nations., 2014.
[2]
Centers for Disease Control and Prevention. The biggest antibiotic-resistant threats in the U.S., https://www.cdc.gov/drugresistance/biggest_threats.html
[3]
Klevens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; Craig, A.S.; Zell, E.R.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Fridkin, S.K. Active Bacterial Core surveillance (ABCs) MRSA Investigators. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 2007, 298(15), 1763-1771.
[http://dx.doi.org/10.1001/jama.298.15.1763] [PMID: 17940231]
[4]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[5]
Herper, M. The Cost of Developing Drugs Is Insane., 2017.
[6]
Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev., 2011, 24(1), 71-109.
[http://dx.doi.org/10.1128/CMR.00030-10] [PMID: 21233508]
[7]
Renwick, M.; Mossialos, E. What are the economic barriers of antibiotic R&D and how can we overcome them? Expert Opin. Drug Discov., 2018, 13(10), 889-892.
[http://dx.doi.org/10.1080/17460441.2018.1515908] [PMID: 30175625]
[8]
Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3463-E3470.
[http://dx.doi.org/10.1073/pnas.1717295115] [PMID: 29581252]
[9]
WHO publishes list of bacteria for which new antibiotics are urgently needed., , Available online: . https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[10]
Melander, R.J.; Melander, C. The challenge of overcoming antibiotic resistance: An adjuvant approach? ACS Infect. Dis., 2017, 3(8), 559-563.
[http://dx.doi.org/10.1021/acsinfecdis.7b00071] [PMID: 28548487]
[11]
Brogden, N.K.; Brogden, K.A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents, 2011, 38(3), 217-225.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.05.004] [PMID: 21733662]
[12]
Maróti, G.; Kereszt, A.; Kondorosi, E.; Mergaert, P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol., 2011, 162(4), 363-374.
[http://dx.doi.org/10.1016/j.resmic.2011.02.005] [PMID: 21320593]
[13]
Tossi, A.; Tarantino, C.; Romeo, D. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem., 1997, 250(2), 549-558.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0549a.x] [PMID: 9428709]
[14]
Hilpert, K.; Elliott, M.; Jenssen, H.; Kindrachuk, J.; Fjell, C.D.; Körner, J.; Winkler, D.F.H.; Weaver, L.L.; Henklein, P.; Ulrich, A.S.; Chiang, S.H.; Farmer, S.W.; Pante, N.; Volkmer, R.; Hancock, R.E. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem. Biol., 2009, 16(1), 58-69.
[http://dx.doi.org/10.1016/j.chembiol.2008.11.006] [PMID: 19171306]
[15]
Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta BBA - Biomembr., 2016, 1858, 1044-1060.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.013]
[16]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[17]
Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Memo zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules, 2019, 24, 1517.
[http://dx.doi.org/10.3390/molecules24081517]
[18]
Kumar, A.; Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Memo, M.; Mastinu, A. Cannabimimetic plants: Are they new cannabinoidergic modulators? Planta, 2019, 249(6), 1681-1694.
[http://dx.doi.org/10.1007/s00425-019-03138-x] [PMID: 30877436]
[19]
Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315.
[http://dx.doi.org/10.1016/j.jep.2018.09.004] [PMID: 30205181]
[20]
Mastinu, A.; Premoli, M.; Ferrari-Toninelli, G.; Tambaro, S.; Maccarinelli, G.; Memo, M.; Bonini, S.A. Cannabinoids in health and disease: Pharmacological potential in metabolic syndrome and neuroinflammation. Horm. Mol. Biol. Clin. Investig., 2018, 36(2), 36.
[http://dx.doi.org/10.1515/hmbci-2018-0013] [PMID: 29601300]
[21]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]
[22]
Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10; approved standard; , Clinical and Laboratory Standards Institute, Ed.; Documents / Clinical and Laboratory Standards Institute; 10. ed.; Committee for Clinical Laboratory Standards Wayne, PA. 2015. 978-1-56238-987-1
[23]
Falciani, C.; Lozzi, L.; Pollini, S.; Luca, V.; Carnicelli, V.; Brunetti, J.; Lelli, B.; Bindi, S.; Scali, S.; Di Giulio, A.; Rossolini, G.M.; Mangoni, M.L.; Bracci, L.; Pini, A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One, 2012, 7(10), e46259.
[http://dx.doi.org/10.1371/journal.pone.0046259] [PMID: 23056272]
[24]
Luca, V.; Stringaro, A.; Colone, M.; Pini, A.; Mangoni, M.L. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell. Mol. Life Sci., 2013, 70(15), 2773-2786.
[http://dx.doi.org/10.1007/s00018-013-1291-7] [PMID: 23503622]
[25]
Feng, X.; Sambanthamoorthy, K.; Palys, T.; Paranavitana, C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides, 2013, 49, 131-137.
[http://dx.doi.org/10.1016/j.peptides.2013.09.007] [PMID: 24071034]
[26]
Almaaytah, A.; Tarazi, S.; Alsheyab, F.; Al-Balas, Q.; Mukattash, T. Antimicrobial and antibiofilm activity of mauriporin, a multifunctional scorpion venom peptide. Int. J. Pept. Res. Ther., 2014, 20, 397-408.
[http://dx.doi.org/10.1007/s10989-014-9405-0]
[27]
Parker, A.E.; Walker, D.K.; Goeres, D.M.; Allan, N.; Olson, M.E.; Omar, A. Ruggedness and reproducibility of the MBEC biofilm disinfectant efficacy test. J. Microbiol. Methods, 2014, 102, 55-64.
[http://dx.doi.org/10.1016/j.mimet.2014.04.013] [PMID: 24815513]
[28]
Sivanmaliappan, T.S.; Sevanan, M. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. Int. J. Microbiol., 2011, 2011, 605195.
[http://dx.doi.org/10.1155/2011/605195] [PMID: 22164164]
[29]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[30]
Brooks, B.D.; Brooks, A.E. Therapeutic strategies to combat antibiotic resistance. Adv. Drug Deliv. Rev., 2014, 78, 14-27.
[http://dx.doi.org/10.1016/j.addr.2014.10.027] [PMID: 25450262]
[31]
Rivas-Santiago, B.; Serrano, C.J.; Enciso-Moreno, J.A. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect. Immun., 2009, 77(11), 4690-4695.
[http://dx.doi.org/10.1128/IAI.01515-08] [PMID: 19703980]
[32]
Agarwal, S.; Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antimicrobial peptides as anti-infectives against Staphylococcus epidermidis. Med. Princ. Pract., 2016, 25(4), 301-308.
[http://dx.doi.org/10.1159/000443479] [PMID: 26684017]
[33]
Bondaryk, M.; Staniszewska, M.; Zielińska, P.; Urbańczyk-Lipkowska, Z. Natural antimicrobial peptides as inspiration for design of a new generation antifungal compounds. J. Fungi (Basel), 2017, 3(3), 46.
[http://dx.doi.org/10.3390/jof3030046] [PMID: 29371563]
[34]
Shurko, J.F.; Galega, R.S.; Li, C.; Lee, G.C. Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus. J. Antibiot. (Tokyo), 2018, 71(11), 971-974.
[http://dx.doi.org/10.1038/s41429-018-0090-7] [PMID: 30120393]
[35]
Amso, Z.; Hayouka, Z. Antimicrobial random peptide cocktails: A new approach to fight pathogenic bacteria. Chem. Commun. (Camb.), 2019, 55(14), 2007-2014.
[http://dx.doi.org/10.1039/C8CC09961H] [PMID: 30688322]
[36]
Méndez-Samperio, P. Peptidomimetics as a new generation of antimicrobial agents: Current progress. Infect. Drug Resist., 2014, 7, 229-237.
[http://dx.doi.org/10.2147/IDR.S49229] [PMID: 25210467]
[37]
Mojsoska, B.; Jenssen, H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel), 2015, 8(3), 366-415.
[http://dx.doi.org/10.3390/ph8030366] [PMID: 26184232]
[38]
Oliva, R.; Chino, M.; Pane, K.; Pistorio, V.; De Santis, A.; Pizzo, E.; D’Errico, G.; Pavone, V.; Lombardi, A.; Del Vecchio, P.; Notomista, E.; Nastri, F.; Petraccone, L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci. Rep., 2018, 8(1), 8888.
[http://dx.doi.org/10.1038/s41598-018-27231-5] [PMID: 29892005]
[39]
Reithofer, M.R.; Chan, K-H.; Lakshmanan, A.; Lam, D.H.; Mishra, A.; Gopalan, B.; Joshi, M.; Wang, S.; Hauser, C.A.E. Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy. Chem. Sci. (Camb.), 2014, 5, 625-630.
[http://dx.doi.org/10.1039/C3SC51930A]
[40]
Vaudry, H.; Tonon, M-C.; Vaudry, D. Editorial: Trends in regulatory peptides. Front. Endocrinol. (Lausanne), 2018, 9, 125.
[http://dx.doi.org/10.3389/fendo.2018.00125] [PMID: 29632516]
[41]
Teo, S.W.; Yong, Y.E.; Ng, S.M.S.; Ng, F.M.; Teo, J.W.P.; Jureen, R.; Hill, J.; Chia, C.S.B. Identification of an Ultra-Short Peptide with Potent Pseudomonas aeruginosa Activity for Development as a Topical Antibacterial Agent. Int. J. Pept. Res. Ther., 2019, 25, 359-366.
[http://dx.doi.org/10.1007/s10989-018-9678-9]
[42]
Ni, M.; Zhuo, S. Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Advances, 2019, 9, 844-852.
[http://dx.doi.org/10.1039/C8RA07533F]
[43]
Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides-using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta BBABiomembr., 2006, 1758, 1436-1449.
[44]
Vranova, V.; Rejsek, K.; Skene, K.R.; Formanek, P. Non-protein amino acids: Plant, soil and ecosystem interactions. Plant Soil, 2011, 342, 31-48.
[http://dx.doi.org/10.1007/s11104-010-0673-y]
[45]
Loll, P.J.; Upton, E.C.; Nahoum, V.; Economou, N.J.; Cocklin, S. The high resolution structure of tyrocidine A reveals an amphipathic dimer. Biochim. Biophys. Acta, 2014, 1838(5), 1199-1207.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.033] [PMID: 24530898]
[46]
Soejima, Y.; Hashiguchi, A.; Izumiya, N. Syntheses and antibacterial activities of gramicidin S analogs containing L-ornithine in place of L-valine. Biosci. Biotechnol. Biochem., 1994, 58(5), 826-829.
[http://dx.doi.org/10.1271/bbb.58.826] [PMID: 7517227]
[47]
Bernlohr, R.W.; Novelli, G.D. Bacitracin biosynthesis and spore formation: The physiological role of an antibiotic. Arch. Biochem. Biophys., 1963, 103, 94-104.
[http://dx.doi.org/10.1016/0003-9861(63)90014-6] [PMID: 14065979]
[48]
Dennison, S.R.; Phoenix, D.A. Effect of cholesterol on the membrane interaction of Modelin-5 isoforms. Biochemistry, 2011, 50(50), 10898-10909.
[http://dx.doi.org/10.1021/bi201267v] [PMID: 22082130]
[49]
Dennison, S.R.; Phoenix, D.A. Influence of C-terminal amidation on the efficacy of modelin-5. Biochemistry, 2011, 50(9), 1514-1523.
[http://dx.doi.org/10.1021/bi101687t] [PMID: 21241054]
[50]
Shalev, D.E.; Mor, A.; Kustanovich, I. Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry, 2002, 41(23), 7312-7317.
[http://dx.doi.org/10.1021/bi016013m] [PMID: 12044162]
[51]
Mura, M.; Wang, J.; Zhou, Y.; Pinna, M.; Zvelindovsky, A.V.; Dennison, S.R.; Phoenix, D.A. The effect of amidation on the behaviour of antimicrobial peptides. Eur. Biophys. J., 2016, 45(3), 195-207.
[http://dx.doi.org/10.1007/s00249-015-1094-x] [PMID: 26745958]
[52]
Selsted, M.E.; Novotny, M.J.; Morris, W.L.; Tang, Y.Q.; Smith, W.; Cullor, J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem., 1992, 267(7), 4292-4295.
[PMID: 1537821]
[53]
Lawyer, C.; Pai, S.; Watabe, M.; Borgia, P.; Mashimo, T.; Eagleton, L.; Watabe, K. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett., 1996, 390(1), 95-98.
[http://dx.doi.org/10.1016/0014-5793(96)00637-0] [PMID: 8706838]
[54]
Bi, X.; Wang, C.; Ma, L.; Sun, Y.; Shang, D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J. Appl. Microbiol., 2013, 115(3), 663-672.
[http://dx.doi.org/10.1111/jam.12262] [PMID: 23710779]
[55]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta BBABiomembr., 2006, 1758, 1184-1202.
[56]
Mishra, A.K.; Choi, J.; Moon, E.; Baek, K-H. Tryptophan-rich and proline-rich antimicrobial peptides. Molecules, 2018, 23(4), 815.
[http://dx.doi.org/10.3390/molecules23040815] [PMID: 29614844]
[57]
Mazzé, F.M.; Fuzo, C.A.; Degrève, L. new amphipathy scale: I. Determination of the scale from molecular dynamics data. Biochim. Biophys. Acta BBA - Proteins Proteomics, 2005, 1747, 35-46.
[58]
Dougherty, D.A. Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science, 1996, 271(5246), 163-168.
[http://dx.doi.org/10.1126/science.271.5246.163] [PMID: 8539615]
[59]
Aliste, M.P.; MacCallum, J.L.; Tieleman, D.P. Molecular dynamics simulations of pentapeptides at interfaces: Salt bridge and cation-π interactions. Biochemistry, 2003, 42(30), 8976-8987.
[http://dx.doi.org/10.1021/bi027001j] [PMID: 12885230]
[60]
Rezansoff, A.J.; Hunter, H.N.; Jing, W.; Park, I.Y.; Kim, S.C.; Vogel, H.J. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells. J. Pept. Res., 2005, 65(5), 491-501.
[http://dx.doi.org/10.1111/j.1399-3011.2005.00263.x] [PMID: 15853943]
[61]
Jing, W.; Hunter, H.N.; Hagel, J.; Vogel, H.J. The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers. J. Pept. Res., 2003, 61(5), 219-229.
[http://dx.doi.org/10.1034/j.1399-3011.2003.00050.x] [PMID: 12662355]
[62]
Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, 160(1), 91-96.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x] [PMID: 9495018]
[63]
Hao, G.; Shi, Y-H.; Tang, Y-L.; Le, G-W. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J. Microbiol., 2013, 51(2), 200-206.
[http://dx.doi.org/10.1007/s12275-013-2441-1] [PMID: 23625221]
[64]
Anunthawan, T.; de la Fuente-Núñez, C.; Hancock, R.E.W.; Klaynongsruang, S. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim. Biophys. Acta BBABiomembr., 2015, 1848, 1352-1358.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.021]
[65]
Wenzel, M.; Chiriac, A.I.; Otto, A.; Zweytick, D.; May, C.; Schumacher, C.; Gust, R.; Albada, H.B.; Penkova, M.; Krämer, U.; Erdmann, R.; Metzler-Nolte, N.; Straus, S.K.; Bremer, E.; Becher, D.; Brötz-Oesterhelt, H.; Sahl, H.G.; Bandow, J.E. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. USA, 2014, 111(14), E1409-E1418.
[http://dx.doi.org/10.1073/pnas.1319900111] [PMID: 24706874]
[66]
Shaw, J.E.; Alattia, J-R.; Verity, J.E.; Privé, G.G.; Yip, C.M. Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol., 2006, 154(1), 42-58.
[http://dx.doi.org/10.1016/j.jsb.2005.11.016] [PMID: 16459101]
[67]
Marchand, C.; Krajewski, K.; Lee, H-F.; Antony, S.; Johnson, A.A.; Amin, R.; Roller, P.; Kvaratskhelia, M.; Pommier, Y. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res., 2006, 34(18), 5157-5165.
[http://dx.doi.org/10.1093/nar/gkl667] [PMID: 16998183]
[68]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[69]
Ghosh, A.; Kar, R.K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem, 2014, 9(9), 2052-2058.
[http://dx.doi.org/10.1002/cmdc.201402215] [PMID: 25044630]
[70]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[71]
Rishi, P.; Vij, S.; Maurya, I.K.; Kaur, U.J.; Bharati, S.; Tewari, R. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). Microb. Pathog., 2018, 124, 11-20.
[http://dx.doi.org/10.1016/j.micpath.2018.08.023] [PMID: 30118800]
[72]
Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front. Microbiol., 2014, 4, 422.
[http://dx.doi.org/10.3389/fmicb.2013.00422] [PMID: 24409175]
[73]
Siibak, T.; Peil, L.; Xiong, L.; Mankin, A.; Remme, J.; Tenson, T. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob. Agents Chemother., 2009, 53(2), 563-571.
[http://dx.doi.org/10.1128/AAC.00870-08] [PMID: 19029332]
[74]
Fetar, H.; Gilmour, C.; Klinoski, R.; Daigle, D.M.; Dean, C.R.; Poole, K. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: Regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob. Agents Chemother., 2011, 55(2), 508-514.
[http://dx.doi.org/10.1128/AAC.00830-10] [PMID: 21078928]
[75]
Morita, Y.; Kimura, N.; Mima, T.; Mizushima, T.; Tsuchiya, T. Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J. Gen. Appl. Microbiol., 2001, 47(1), 27-32.
[http://dx.doi.org/10.2323/jgam.47.27] [PMID: 12483565]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2019
Page: [745 - 754]
Pages: 10
DOI: 10.2174/1389201020666190618111252
Price: $65

Article Metrics

PDF: 25
HTML: 4
EPUB: 1
PRC: 1