Factorial Experimental Design for Optimization of Zinc Oxide Nanoparticles Production

Author(s): Dina E. El-Ghwas, Tarek E. Mazeed, Amr El-Waseif, Hind A. Al-Zahrani, Omar A. Almaghrabi, Ahmed M. Elazzazy*

Journal Name: Current Nanoscience

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Biosynthetic nanomaterials have recently received increasing attention because they are non-toxic, clean, environmentally acceptable, safe, and biocompatible.

Objective: In the present study, cell-free culture filtrate of Aspergillus sp. was used for extracellular synthesis of zinc oxide (ZnO) nanoparticles.

MethodS: Plackett-Burman and Taguchi designs were implemented to optimize conditions for maximum ZnO nanoparticle production. In the Plackett-Burman design, 15 factors, representing different carbon and nitrogen sources, were studied. For the Taguchi design, an L-27 (313) standard orthogonal array was constructed to examine nine factors.

Results: The maximum yield of ZnO nanoparticles of 21.73 g/L was achieved with 1.0 mM ZnSO4 under optimal conditions of peptone extract (20 g/L), yeast extract (10 g/L), meat extract (10 g/L), K2HPO4 (0.25 g/L), FeSO4⋅7H2O (0.002 g/L), NaCl (2.5 g/L), pH 6, 32°C, and a 200-mL volume. The ZnO nanoparticles’ production was confirmed by the formation of white aggregates. The UV absorption spectrum showed one peak at 376 nm, which also confirmed the formation of nanoparticles. Transmission electron microscopy revealed that the nanoparticles were large rods of 11.6-43.97 nm diameter, and 355.91 nm length. Importantly, the ZnO nanoparticles exhibited broad antimicrobial activity against gram-positive and gram-negative bacteria and a unicellular fungus.

Conclusion: The concentrations of ZnSO4 ions, ferrous ions, and peptone and meat extracts, and the interactions between them, were observed to be the main parameters influencing ZnO nanoparticles’ yield.

Keywords: Nanoparticles, biosynthesis, zinc oxide, Plackett-Burman design, Taguchi design, antimicrobial activity.

Sonal, S.B.; Swapnil, C.G.; Aniket, K.G.; Mahendra, K.R. Rapid Synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci. World J., 2013, 2013 796018
Lucas, F.F.; Gustavo, H.C.; Jorge, G.S.; Ademar, B.L. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials , 2018, 8(11) pii: E939
Sheikholeslami, M.; Hakan, F.; Nidal, A.; Zhixiong, L. Nanoparticle transportation of CuO-H2O nanofluid in a porous semi annulus due to Lorentz forces. Int. J. Numer. Methods Heat Fluid Flow, 2018, 29(1), 294-308.
Sheikholeslami, M.; Ganji, D.D. Numerical analysis of nanofluid transportation in porous media under the influence of external magnetic source. J. Mol. Liq., 2017, 233, 499-507.
Kundu, A.; Anand, S.; Verma, H.C. A citrate process to synthesize nanocrystalline zinc ferrite from 7 to 23 nm crystallite size. Powder Technol., 2003, 132(2-3), 131-136.
Bid, S.; Pradhan, S.K. Preparation of zinc ferrite by high energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys., 2003, 82(1), 27-37.
Ehrhardt, H.; Campbel, S.J.; Hofmann, M. Magnetism of the nanostructured spinel zinc ferrite. Scr. Mater., 2003, 48(8), 1141-1146.
Shenoya, S.D.; Joy, P.A.; Anantharaman, M.R. Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. Magn. Magn. Mater., 2004, 269(2), 217-226.
Mahmoud, W.; Elazzazy, A.M.; Danial, E.N. In vitro evaluation of antioxidant, biochemical and antimicrobial properties of biosynthesized silver nanoparticles against multidrug-resistant bacterial pathogens. Biotechnol. Biotechnol. Equip., 2017, 31, 373-379.
Tanaka, Y. Synthesis of Nanosize Particles in Thermal Plasmas. In: Kulacki, F. (eds.). Handbook of Thermal Science and Engineering; 1st Ed. Springer Nature: Switzerland AG,, 2018; pp. 2791-2828.
Pantidos, N.; Horsfall, L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 5, 233.
Zonooz, N.F.; Salouti, M. Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Sci. Iran., 2011, 18(6), 1631-1635.
Elazzazy, A.M.; Essam, K.F.; Mohamed, A. In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and tomato bushy stunt virus. Trop. J. Pharm. Res., 2017, 16(11), 2705-2711.
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6(2), 257-262.
Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf., 2000, 45, 198-207.
Sastry, M.; Ahmad, A.; Khan, I.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr. Sci., 2003, 85(2), 162-170.
Zeinab, S.; Mojtaba, S.; Farzad, K. Biological synthesis of gold nanoparticles by fungus Epicoccumnigrum. J. Clust Sci., 2011, 22(4), 661-665.
Yumak, T.; Kuralay, F.; Muti, M.; Sinag, A.; Erdem, A.; Abaci, S. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization. Colloids Surf. B Biointerfaces, 2011, 86(2), 397-403.
AbdElhady. M.M. Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int. J. Carbohydr. Chem., 2012, 2012 Article ID 840591
Anita, S.; Ramachandran, T.; Koushik, C.V.; Rajendran, R.; Mahalakshmi, M. Preparation and Characterization of zinc oxide nanoparticels and a study of the antimicrobial property of cotton fabric treated with the particles. JTATM, 2010, 6(4), 1-7.
Zhang, J.; Fan, Y.; Smith, E. Experimental design for the optimization of lipid nanoparticles. J. Pharm. Sci., 2009, 98(5), 1813-1819.
Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5), 965-977.
Teo’filo, R.F.; Ferreira, M.M.C. Chemometrics II: spreadsheets for calculations of experimental planning, a tutorial. Quim. Nova, 2006, 29(2), 338-350.
Dhoble, S.; Kulkarni, S. Biosynthesis of metal nanoparticles from fungal isolates of soybean rhizosphere. Int. J. Sci. Res., 2015, 4, 3-5.
Ehab, B.; Tamer, M.; Amr, E.; Ahmed, A. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J. Appl. Pharm. Sci., 2018, 8(05), 119-128.
Strobel, R.J.; Sullivan, G.R. Experimental design for improvement of fermentations. In: Manual of industrial Microbiology and Biotechnology; Demain, A.L.; Davies, J.E., Eds.; ASM Press: Washington, DC, 1999; pp. 80-93.
Sreenivas, R.R.; Prakasham, R.S.; Krishna, P.K.; Rajesham, S.; Sharma, P.N.; Venkateswar, R.L. Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem., 2004, 39, 951-956.
Naseer, A.; Shahid, K.; Zulfiqar, A.R.; Tanveer, H.; Faiza, A. Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Appl. Surf. Sci., 2016, 367, 370-381.
Sivarao, S.; Anand, T.; Ammar, A. DOE based statistical approaches in modeling of laser processing-review and suggestion. Int. J. Eng. Technol, 2010, 10, 1-8.
Probin, P.; Giasuddin, A. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol, 2017, 8(04)045016
Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by Conductimetric assay. J. Microbiol. Methods, 2003, 54(2), 177-182.
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279, 71-76.
He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of ZnO nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 2011, 166(3), 207-215.
El-Waseif, A.A.; El-Ghwas, D.E. EL-Diwany, A.I. Zinc Oxide nanoparticles formation, characterization and biological approach. J. Innov. Pharm. Biol. Sci, 2017, 4(1), 39-43.
Rajan, A.; Cherian, E.; Baskar, G. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. IJMST, 2016, 1(2), 52-57.
Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Latex mediated synthesis zinc nanoparticles: Green synthesis approach. J. Nanopart. Res., 2012, 14(5), 856.
Klung, H.P.; Alexandar, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed; Wiley: New York, 1974.
Nagarajan, S.; Arumugam, K.K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnology, 2013, 11, 39.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [51 - 61]
Pages: 11
DOI: 10.2174/1573413715666190618103127
Price: $65

Article Metrics

PDF: 22