Green Application of Phase-Transfer Catalysis in Oxidation: A Comprehensive Review

Author(s): Chuan-Hui Wang, Chen-Fu Liu, Guo-Wu Rao*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Oxidation reactions have emerged as one of the most versatile tools in organic chemistry. Various onium salts such as ammonium, phosphonium, arsonium, bismuthonium, tellurium have been used as phase transfer catalysts in many oxidation reactions. Certainly, considerable catalysts have been widely used in Phase-Transfer Catalysis (PTC). This review focuses on the application of PTC in various oxidation reaction. Furthermore, PTC also conforms to the concept of “Green Chemistry”.

• Oxidation has become one of the most widely used tools in organic chemistry and phase transfer catalysts has been widely used in oxidation.

• The application of phase transfer catalysts in oxidation reaction will be summarized.

• Phase transfer catalysts have important application in various oxidation reaction.

Keywords: Catalyst, green chemistry, onium salts, oxidation reaction, phase transfer catalyst, Phase-Transfer Catalysis (PTC).

[1]
Starks, C.M. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. J. Am. Chem. Soc., 1971, 93(1), 195-199.
[http://dx.doi.org/10.1021/ja00730a033]
[2]
Herriott, A.W.; Picker, D. Phase transfer catalysis. An evaluation of catalysis. J. Am. Chem. Soc., 1975, 97(9), 2345-2349.
[http://dx.doi.org/10.1021/ja00842a006]
[3]
Metzger, J.O. Solvent-free organic syntheses. Angew. Chem. Int. Ed. Engl., 1998, 37(21), 2975-2978.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981116)37:21<2975:AID-ANIE2975>3.0.CO;2-A] [PMID: 29711128]
[4]
Makosza, M. Phase-Transfer catalysis. A general green methodology in organic synthesis. Pure Appl. Chem., 2000, 72(7), 1399-1403.
[http://dx.doi.org/10.1351/pac200072071399]
[5]
Albanese, D.C.M.; Foschi, F.; Penso, M. Sustainable oxidations under phase-transfer catalysis conditions. Org. Process Res. Dev., 2016, 20(2), 129-139.
[http://dx.doi.org/10.1021/acs.oprd.5b00385]
[6]
Zohreh, N. Tavakolizadeh, M.; Hosseini, S. H.; Jahani, M.; Pourjavadi, A.; Bennett, C. Highly dispersible bis-imidazolium/WO42− modified magnetic nanoparticles: A heterogeneous phase transfer catalyst for green and selective oxidations. New J. Chem., 2016, 40(12), 10325-10332.
[http://dx.doi.org/10.1039/C6NJ02398C]
[7]
Kim, M.H.; Park, Y.; Jeong, B.S.; Park, H.G.; Jew, S.S. Synthesis of (-)-paroxetine via enantioselective phase-transfer catalytic monoalkylation of malonamide ester. Org. Lett., 2010, 12(12), 2826-2829.
[http://dx.doi.org/10.1021/ol100928v] [PMID: 20499863]
[8]
Farrán, A.; Cai, C.; Sandoval, M.; Xu, Y.; Liu, J.; Hernáiz, M.J.; Linhardt, R.J. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev., 2015, 115(14), 6811-6853.
[http://dx.doi.org/10.1021/cr500719h] [PMID: 26121409]
[9]
Yadav, G.D.; Desai, N.M. Selectivity engineering of phase transfer catalyzed alkylation of 2′-hydroxyacetophenone: Enhancement in rates and selectivity by creation of a third liquid phase. Org. Process Res. Dev., 2005, 9(6), 749-756.
[http://dx.doi.org/10.1021/op050086m]
[10]
Coleman, M.T.; LeBlanc, G. Use of diethoxymethane as a solvent for phase transfer-catalyzed O-alkylation of phenols. Org. Process Res. Dev., 2010, 14(3), 732-736.
[http://dx.doi.org/10.1021/op900324p]
[11]
Yadav, G.D.; Tekale, S.P. Selective O-alkylation of 2-naphthol using phosphonium-based ionic liquid as the phase transfer catalyst. Org. Process Res. Dev., 2010, 14(3), 722-727.
[http://dx.doi.org/10.1021/op100052g]
[12]
Durst, H.D.; Liebeskind, L. Phase transfer catalysis. acetoacetic ester condensation. J. Org. Chem., 1974, 39(22), 3271-3273.
[http://dx.doi.org/10.1021/jo00936a021]
[13]
Yadav, G.D.; Kadam, A.A. Atom-efficient benzoin condensation in liquid-liquid system using quaternary ammonium salts: Pseudo-phase transfer catalysis. Org. Process Res. Dev., 2012, 16(5), 755-763.
[http://dx.doi.org/10.1021/op300027j]
[14]
Corona, J.A.; Davis, R.D.; Kedia, S.B.; Mitchell, M.B. Expedited development through parallel reaction screening: Application to PTC-mediated Knoevenagel condensation. Org. Process Res. Dev., 2010, 14(3), 712-715.
[http://dx.doi.org/10.1021/op100026u]
[15]
Reeves, W.P.; White, M.R.; Bier, D. Nucleophilic substitution by phase transfer catalysis. J. Chem. Educ., 1978, 55(1), 56.
[http://dx.doi.org/10.1021/ed055p56]
[16]
Gallucci, R.R.; Going, R.C. Synthesis of bis(aryloxyethyl) vinyl ethers via phase-transfer-catalyzed nucleophilic displacement on 2-chloroethyl vinyl ether. J. Org. Chem., 1983, 48(3), 342-346.
[http://dx.doi.org/10.1021/jo00151a013]
[17]
Feldman, D.; Segal-Lew, D.; Rabinovitz, M. Nucleophilic aromatic substitution by hydroxide ion under phase-transfer catalysis conditions; fluorine displacement in polyfluorobenzene derivatives. J. Org. Chem., 1991, 56(26), 7350-7354.
[http://dx.doi.org/10.1021/jo00026a033]
[18]
Albanese, D.; Ghidoli, C.; Zenoni, M. Concise synthesis of vinylheterocycles through β-elimination under solventless phase transfer catalysis conditions. Org. Process Res. Dev., 2008, 12(4), 736-739.
[http://dx.doi.org/10.1021/op800001d]
[19]
Diez-Barra, E.; De la Hoz, A.; Merino, S.; Sánchez-Verdú, P. Michael addition of 2-phenylcyclohexanone to chalcone under phasetrans fercatalysis conditions. Phase-Transfer Catalysis;, American Chemical Society,. 1997, 659, 181-189.
[http://dx.doi.org/10.1021/bk-1997-0659.ch014]
[20]
Ramachandran, P.V.; Madhi, S.; Bland-Berry, L.; Ram Reddy, M.V.; O’Donnell, M.J. Catalytic enantioselective synthesis of glutamic acid derivatives via tandem conjugate addition-elimination of activated allylic acetates under chiral PTC conditions. J. Am. Chem. Soc., 2005, 127(39), 13450-13451.
[http://dx.doi.org/10.1021/ja052638m] [PMID: 16190680]
[21]
Zhang, X.Z.; Deng, Y.H.; Yan, X.; Yu, K.Y.; Wang, F-X.; Ma, X.Y.; Fan, C.A. Diastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methides. J. Org. Chem., 2016, 81(13), 5655-5662.
[http://dx.doi.org/10.1021/acs.joc.6b00390] [PMID: 27224285]
[22]
Amsterdamsky, C. Phase transfer catalysis applied to oxidation. J. Chem. Educ., 1996, 73(1), 92.
[http://dx.doi.org/10.1021/ed073p92]
[23]
Lee, D.G.; Lee, E.J.; Brown, K.C. The phase-transfer-assisted ermanganate oxidation of alkenes and alkynes. Phase-Transfer Catalysis;, American Chemical Society. 1987. 326, 82-95
[http://dx.doi.org/10.1021/bk-1987-0326.ch008]
[24]
Mondal, U.; Sen, S. Multivariate analysis in selective nitroacetophenone conversion by hydrogen sulfide under phase transfer catalysis. Org. Process Res. Dev., 2017, 21(1), 23-30.
[http://dx.doi.org/10.1021/acs.oprd.6b00287]
[25]
Maity, S.K.; Pradhan, N.C.; Patwardhan, A.V. Kinetics of reduction of nitrotoluenes by H2S-rich aqueous ethanolamine. Ind. Eng. Chem. Res., 2006, 45(23), 7767-7774.
[http://dx.doi.org/10.1021/ie060627b]
[26]
Yang, Z.J.; Zhang, X.; Yao, X.D.; Fang, Y.X.; Chen, H.Y.; Ji, H.B. β-Cyclodextrin grafted on lignin as inverse phase transfer catalyst for the oxidation of benzyl alcohol in H2O. Tetrahedron, 2016, 72(14), 1773-1781.
[http://dx.doi.org/10.1016/j.tet.2016.02.036]
[27]
Leduc, A.B.; Jamison, T.F. Continuous flow oxidation of alcohols and aldehydes utilizing bleach and catalytic tetrabutylammonium bromide. Org. Process Res. Dev., 2012, 16(5), 1082-1089.
[http://dx.doi.org/10.1021/op200118h]
[28]
Liu, D.; Gui, J.Z.; Lu, F.; Sun, Z.L.; Park, Y.K. New simple synthesis route for decatungstate hybrids: Novel thermo-regulated phase transfer catalysts for selective oxidation of alcohols. Catal. Lett., 2012, 142(11), 1330-1335.
[http://dx.doi.org/10.1007/s10562-012-0911-4]
[29]
Sankarshana, T.; Yadagiri, E.; Murthy, J.S.N. Phase transfer catalysis: Oxidation of 2-methyl-1-butanol. Chin. J. Chem. Eng., 2014, 22(9), 1000-1004.
[http://dx.doi.org/10.1016/j.cjche.2014.06.023]
[30]
Zhu, Y.Q.; Xu, J.; Lu, M. Nanocomposite shuttle-supported palladium nanoparticles as a PH-triggered phase transfer catalyst for the aerobic oxidation of alcohols. J. Iran. Chem. Soc., 2015, 12(7), 1213-1219.
[http://dx.doi.org/10.1007/s13738-014-0584-6]
[31]
Wang, Z.X.; Zhang, Y.D.; Tang, P.G. Synthesis of cyclohexene oxide by epoxidation of cyclohexene using hydrogen peroxide with phase transfer catalyst. Jingxi Huagong, 2006, 23(10), 1023-1026.
[32]
Santiago, C.C.; Lafuente, L.; Bravo, R.; Díaz, G.; Ponzinibbio, A. Ionic liquids as phase transfer catalysts: Enhancing the biphasic extractive epoxidation reaction for the selective synthesis of β-O-glycosides. Tetrahedron Lett., 2017, 58(38), 3739-3742.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.033]
[33]
Gao, S.; Zhang, Y.; Zhang, H.Y.; Lv, Y.; Zhao, G.D. Method for preparing ethylene glycol through ethylene oxidization hydration catalyzed by phase-transfer catalyst. CN Patent 105,418,376 2016.
[34]
Tang, R.R.; Zhou, Y.; Yan, R. Process for preparation of ketones by catalytic allylic oxidation of olefin in aqueous solution. CN Patent 105,481,671 2016.
[35]
Adam, W.; Rao, P.B.; Degen, H.G.; Levai, A.; Patonay, T.; Saha-Möller, C.R. Asymmetric Weitz-Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts. J. Org. Chem., 2002, 67(1), 259-264.
[http://dx.doi.org/10.1021/jo0162078] [PMID: 11777469]
[36]
Wu, X.L.; Wang, G.W. Aminochlorination in water: first Brønsted acid-promoted synthesis of vicinal chloramines. J. Org. Chem., 2007, 72(24), 9398-9401.
[http://dx.doi.org/10.1021/jo701957t] [PMID: 17973433]
[37]
Ballistreri, F.P.; Failla, S.; Tomaselli, G.A. Phase-transfer catalytic oxidation of terminal alkynes to keto aldehydes by dilute hydrogen peroxide. J. Org. Chem., 1988, 53(4), 830-831.
[http://dx.doi.org/10.1021/jo00239a027]
[38]
Fan, B.; Wang, G.H.; Liu, Z.M.; Huang, J.B. Method for preparation of piperonylic acid with heliotropine by phase transfer catalysis oxidation. CN Patent 105,732,567 2016.
[39]
Rstakyan, V.I.; Akopyan, A.E.; Zakaryan, G.B.; Attaryan, H.S.; Asratyan, G.V. Oxidation of 1-(2-hydroxyethyl)-3,5-dimethyl-pyrazole-4-carbaldehyde under phase-transfer catalysis. Russ. J. Gen. Chem., 2014, 84(4), 796-798.
[http://dx.doi.org/10.1134/S1070363214040343]
[40]
Ramsden, J.H.; Drago, R.S.; Riley, R. A kinetic study of sulfide oxidation by sodium hypochlorite using phase-transfer catalysis. J. Am. Chem. Soc., 1989, 111(11), 3958-3961.
[http://dx.doi.org/10.1021/ja00193a029]
[41]
Zhao, W.; Yang, C.; Liu, K.; Yang, Y.; Chang, T. Hydrophilic phase transfer catalyst based on the sulfoacid group and polyoxometalate for the selective oxidation of sulfides in water with hydrogen peroxide. New J. Chem., 2017, 41(2), 447-451.
[http://dx.doi.org/10.1039/C6NJ03218D]
[42]
Fukuda, N.; Ikemoto, T. Imide-catalyzed oxidation system: sulfides to sulfoxides and sulfones. J. Org. Chem., 2010, 75(13), 4629-4631.
[http://dx.doi.org/10.1021/jo100719w] [PMID: 20521784]
[43]
Xue, X.; Zhao, W.; Ma, B.; Ding, Y. Efficient oxidation of sulfides catalyzed by a temperature-responsive phase transfer catalyst [(C18H37)2(CH3)2N]7 PW11O39 with hydrogen peroxide. Catal. Commun., 2012, 29, 73-76.
[http://dx.doi.org/10.1016/j.catcom.2012.09.021]
[44]
Saha, B.; Brahma, S.; Basu, J.K.; Sengupta, S. Optimization of ultrasound-assisted oxidation of thiophene using phase transfer catalyst. Indian Chem. Engineer., 2017, 59(3), 200-214.
[http://dx.doi.org/10.1080/00194506.2016.1207572]
[45]
Patil, R.D.; Sasson, Y. Naphthalenes oxidation by aqueous sodium hypochlorite catalyzed by ruthenium salts under phase-transfer catalytic conditions. Catal. Lett., 2016, 146(5), 991-997.
[http://dx.doi.org/10.1007/s10562-016-1717-6]
[46]
Moura, G.L.C.; Simas, A.M. Two-Photon absorption by fluorene derivatives: Systematic molecular design. J. Phys. Chem. C, 2010, 114(13), 6106-6116.
[http://dx.doi.org/10.1021/jp100314c]
[47]
Baj, S.; Chrobok, A.; Siewniak, A. New and efficient technique for the synthesis of ɛ-caprolactone using KHSO5 as an oxidising agent in the presence of a phase transfer catalyst. Appl. Catal. A Gen., 2011, 395(1), 49-52.
[http://dx.doi.org/10.1016/j.apcata.2011.01.022]
[48]
Pummerer, R. Über phenyl-sulfoxyessigsäure. Ber. Dtsch. Chem. Ges., 1909, 42(2), 2282-2291.
[http://dx.doi.org/10.1002/cber.190904202126]
[49]
Pummerer, R. Über phenylsulfoxy-essigsäure. (II.). Ber. Dtsch. Chem. Ges., 1910, 43(2), 1401-1412.
[http://dx.doi.org/10.1002/cber.19100430241]
[50]
Biswas, S.; Kubota, K.; Orlandi, M.; Turberg, M.; Miles, D.H.; Sigman, M.S.; Toste, F.D. Enantioselective synthesis of N,S-acetals by an oxidative Pummerer-Type transformation using phase-transfer catalysis. Angew. Chem. Int. Ed. Engl., 2018, 57(2), 589-593.
[http://dx.doi.org/10.1002/anie.201711277] [PMID: 29171138]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Published on: 01 June, 2020
Page: [405 - 411]
Pages: 7
DOI: 10.2174/1570193X16666190617154733
Price: $65

Article Metrics

PDF: 28
HTML: 2