Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences

Author(s): Rudrashish Haldar*, Devendra Gupta, Shweta Chitranshi, Manish Kumar Singh, Sumit Sachan

Journal Name: Cardiovascular & Hematological Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Cardiovascular & Hematological Agents)

Volume 17 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Artificial blood is an innovative concept of transfusion medicine where specifically designed compounds perform the task of transport and delivery of oxygen in the body to replace this function of allogenic human blood transfusion. Several molecules have been developed in the past few decades to achieve this objective and continous refinements are being continuously made in the quest of the ideal blood substitute. Currently, available technology manufactures artificial blood from haemoglobin obtained from outdated human/bovine blood (Haemoglobin Based Oxygen Carriers) or utilizing Perfluorocarbons. These synthetic blood substitutes are advantageous in that they do not require compatibility testing, are free from blood borne infections, have prolonged shelf life and do not require refrigeration. Artificial blood is projected to have a significant impact on the development of medical care in the future. It can complement the current blood products for transfusion and create a stable supply of safe and effective products. It is likely to reduce the requirements of blood transfusions drastically especially in settings of trauma and surgery thereby reducing the reliance on banked donated blood.

Keywords: Anaemia, blood, erythrocytes, haemoglobin, hypersensitivity, liposomes, resuscitation, transfusion.

Kim, H.W.; Greenburg, A.G. Artificial oxygen carriers as red blood cell substitutes: A selected review and current status. Artif. Organs, 2004, 28(9), 813-828.
Squires, J.E. Artificial blood. Science, 2002, 295(5557), 1002-1005.
Amberson, W.R.; Jennings, J.J.; Rhode, C.M. Clinical experience with hemoglobin-saline solutions. J. Appl. Physiol., 1949, 1(7), 469-489.
Cohn, S.M. Blood substitutes in surgery. Surgery, 2000, 127(6), 599-602.
Farrar, D.; Grocott, M. Intravenous artificial oxygen carriers. Hosp. Med., 2003, 64(6), 352-356.
Kresie, L. Artificial blood: An update on current red cell and platelet substitutes. Proc. Bayl. Univ. Med. Cent., 2001, 14(2), 158-161.
Scott, M.G.; Kucik, D.F.; Goodnough, L.T.; Monk, T.G. Blood substitutes: Evolution and future applications. Clin. Chem., 1997, 43(9), 1724-1731.
Jahr, J.S.; Nesargi, S.B.; Lewis, K.; Johnson, C. Blood substitutes and oxygen therapeutics: An overview and current status. Am. J. Ther., 2002, 9(5), 437-443.
Chang, T.M. Hemoglobin-based red blood cell substitutes. Artif. Organs, 2004, 28(9), 789-794.
Henkel-Honke, T.; Oleck, M. Artificial oxygen carriers: A current review. AANA J., 2007, 75(3), 205-211.
Sarkar, S. Artificial blood. Indian J. Crit. Care Med., 2008, 12(3), 140-144.
Creteur, J.; Vincent, J.L. Hemoglobin solutions. Crit. Care Med., 2003, 31(12), S698-S707.
Pape, A.; Habler, O. Alternatives to allogeneic blood transfusions. Best Pract. Res. Clin. Anaesthesiol., 2007, 21(2), 221-239.
Spahn, D.R.; Kocian, R. The place of artificial oxygen carriers in reducing allogeneic blood transfusions and augmenting tissue oxygenation. Can. J. Anaesth., 2003, 50(6), S41-S47.
Chang, T.M. Oxygen carriers. Curr. Opin. Investig. Drugs, 2002, 3(8), 1187-1190.
Mullon, J.; Giacoppe, G.; Clagett, C.; McCune, D.; Dillard, T. Transfusions of polymerized bovine hemoglobin in a patient with severe autoimmune hemolytic anemia. N. Engl. J. Med., 2000, 342(22), 1638-1643.
LaMuraglia, G.M.; O’Hara, P.J.; Baker, W.H.; Naslund, T.C.; Norris, E.J.; Li, J.; Vandermeersch, E. The reduction of the allogenic transfusion requirement in aortic surgery with a hemoglobin-based solution. J. Vasc. Surg., 2000, 31(2), 299-308.
Riess, J.G. Oxygen carriers (“blood substitutes”) raison d’etre, chemistry and some physiology. Chem. Rev., 2001, 101(9), 2797-2920.
Alayash, A.I. Oxygen therapeutics: Can we tame haemoglobin? Nat. Rev. Drug Discov., 2004, 3(2), 152-159.
Takeoka, S. Developmental trend of artificial blood (artificial red blood cells). Japan Med. Assoc. J., 2005, 48, 135-139.
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
Sakai, H.; Sou, K.; Horinouchi, H.; Kobayashi, K.; Tsuchida, E. Haemoglobin-vesicles as artificial oxygen carriers: Present situation and future visions. J. Intern. Med., 2008, 263(1), 4-15.
Chang, T.M. Red blood cell substitutes. Best Pract. Res. Clin. Haematol., 2000, 13(4), 651-667.
Anbari, K.K.; Garino, J.P.; Mackenzie, C.F. Hemoglobin substitutes. Eur. Spine J., 2004, 13(Suppl. 1), S76-S82.
Shander, A.; Alalawi, R.; Seeber, P.; Lui, J. Use of a hemoglobin-based oxygen carrier in the treatment of severe anemia. Obstet. Gynecol., 2004, 103(5 Pt 2), 1096-1099.
Hill, S.E. Oxygen therapeutics-current concepts. Can. J. Anaesth., 2001, 48(4)(Suppl.), S32-S40.
Hong, F.; Shastri, K.A.; Logue, G.L.; Spaulding, M.B. Complement activation by artificial blood substitute Fluosol: In vitro and in vivo studies. Transfusion, 1991, 31(7), 642-647.
Spahn, D.R.; Kocian, R. Artificial O2 carriers: Status in 2005. Curr. Pharm. Des., 2005, 11(31), 4099-4114.
Lee, D.H.; Blajchman, M.A. Platelet substitutes and novel platelet products. Expert Opin. Investig. Drugs, 2000, 9(3), 457-469.
Rousseau, G.F.; Giarratana, M.C.; Douay, L. Large-scale production of red blood cells from stem cells: What are the technical challenges ahead? Biotechnol. J., 2014, 9(1), 28-38.
Bian, Y.; Rong, Z.; Chang, T.M. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: A novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(3), 127-136.
Kasper, S.M.; Walter, M.; Grüne, F.; Bischoff, A.; Erasmi, H.; Buzello, W. Effects of a Hemoglobin-Based Oxygen Carrier (HBOC-201) on hemodynamics and oxygen transport in patients undergoing preoperative hemodilution for elective abdominal aortic surgery. Anesth. Analg., 1996, 83(5), 921-927.
Lamy, M.L.; Daily, E.K.; Brichant, J.F.; Larbuisson, R.P.; Demeyere, R.H.; Vandermeersch, E.A.; Lehot, J.J.; Parsloe, M.R.; Berridge, J.C.; Sinclair, C.J.; Baron, J.F.; Przybelski, R.J. Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. The DCLHb Cardiac Surgery Trial Collaborative Group. Anesthesiology, 2000, 92(3), 646-656.
Schubert, A.; Przybelski, R.J.; Eidt, J.F.; Lasky, L.C.; Marks, K.E.; Karafa, M.; Novick, A.C.; O’Hara, J.F.; Saunders, M.E.; Blue, J.W.; Tetzlaff, J.E.; Mascha, E. Diaspirin-crosslinked hemoglobin reduces blood transfusion in noncardiac surgery: A multicenter, randomized, controlled, double-blinded trial. Anesth. Analg., 2003, 97(2), 323-332.
Sprung, J.; Kindscher, J.D.; Wahr, J.A.; Levy, J.H.; Monk, T.G.; Moritz, M.W.; O’Hara, P.J. The use of bovine hemoglobin glutamer-250 (Hemopure) in surgical patients: Results of a multicenter, randomized, single-blinded trial. Anesth. Analg., 2002, 94(4), 799-808.
Pape, A.; Habler, O. Alternatives to allogeneic blood transfusions. Best Pract. Res. Clin. Anaesthesiol., 2007, 21(2), 221-239.
Ohta, H.; Kaga, M.; Li, H.; Sakai, H.; Okamura, K.; Yaegashi, N. Potential new non-invasive therapy using artificial oxygen carriers for pre-eclampsia. J. Funct. Biomater., 2017, 8(3), 32.
Kaneda, S.; Ishizuka, T.; Sekiguchi, A.; Morimoto, K.; Kasukawa, H. Efficacy of liposome-encapsulated hemoglobin in a rat model of cerebral ischemia. Artif. Organs, 2014, 38(8), 650-655.
Fontes, P.A. The evolution of oxygen carrier solutions for machine perfusion. Transplantation, 2017, 101(11), 2657-2658.
Xu, X.; Song, R.; He, M.; Peng, C.; Yu, M.; Hou, Y.; Qiu, H.; Zou, R.; Yao, S. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. Lab Chip, 2017, 17(20), 3504-3513.
Bönner, F.; Merx, M.W.; Klingel, K.; Begovatz, P.; Flögel, U.; Sager, M.; Temme, S.; Jacoby, C.; Salehi Ravesh, M.; Grapentin, C.; Schubert, R.; Bunke, J.; Roden, M.; Kelm, M.; Schrader, J. Monocyte imaging after myocardial infarction with 19F MRI at 3 T: A pilot study in explanted porcine hearts. Eur. Heart J. Cardiovasc. Imag, 2015, 16(6), 612-620.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [11 - 16]
Pages: 6
DOI: 10.2174/1871525717666190617120045

Article Metrics

PDF: 52
PRC: 1