Thiazole Compounds as Antiviral Agents: An Update

Author(s): Inder P. Singh*, Shiv Gupta, Sanjay Kumar

Journal Name: Medicinal Chemistry

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Thiazole is a good nucleus owing to its various pharmaceutical applications. Thiazole containing compounds (thiazoles) have shown various biological activities like antioxidant, analgesic, antibacterial, anticancer, antiallergic, antihypertensive, antiinflammatory, antimalarial, antifungal and antipsychotic. The scaffold is present in more than 18 FDA approved drugs and also in more than 70 experimental drugs. Only a few reviews are available in the literature despite its great medicinal importance. During the course of time, this scaffold has been studied extensively for its antiviral activities and provided compounds with activity in the nM range. However, no focused review is available on the compilation of antiviral activities shown by this scaffold.

Objective: In the present review, we have made an effort to compile antiviral literature of thiazoles reported from the year 2011 to till date.

Methods: We searched the SciFinder database (excluding patent literature) with keywords like “antiviral”, “anti-HIV” and “virus”. Further filters were applied for the year of publication and keywords thiazole, reviews etc. to find relevant literature reported on the antiviral activities of thiazoles.

Results: Nearly, 50 research articles were selected to compile and review the antiviral literature of thiazoles reported from the year 2011 to till date. Compounds 8, 25, 40, 62, 72, 73, 91, 112, 113, 131, 137, 175, 198, 200, 201 and 213 were reported in the literature with potent antiviral activity against CVB, SARS, RSV, HCV, HRV, VZV, TMV, FMDV, DENV, YFV, influenza virus, Junin virus, HIV-1, HSV, VV and EBV, respectively.

Conclusion: There is further scope for the synthesis and evaluation of novel thiazole compounds by taking the most active compounds as lead structures. In conclusion, this review provides an overview of antiviral activities of thiazole compounds reported from the year 2011 to till date.

Keywords: Thiazoles, anti-viral, monosubstituted thiazoles, disubstituted thiazoles, trisubstituted thiazoles, miscellaneous thiazoles.

[1]
Hantzsch, A.; Weber, J. Ueber verbindungen des thiazols (pyridins der thiophenreihe). Eur. J. Inorg. Chem., 1887, 20(2), 3118-3132.
[2]
Videnov, G.; Kaiser, D.; Kempter, C.; Jung, G. Synthesis of naturally occurring, conformationally restricted oxazole- and thiazole-containing Di- and Tripeptide mimetics. Angew. Chem. Int. Ed. Engl., 1996, 35, 1503-1506.
[http://dx.doi.org/10.1002/anie.199615031]
[3]
Utkina, N.K. Sagitol D, a new thiazole containing pyridoacridine alkaloid from a vietnamese ascidian. Nat. Prod. Commun., 2015, 10(9), 1547-1548.
[http://dx.doi.org/10.1177/1934578X1501000915] [PMID: 26594755]
[4]
Molnár, I.; Schupp, T.; Ono, M.; Zirkle, R.; Milnamow, M.; Nowak-Thompson, B.; Engel, N.; Toupet, C.; Stratmann, A.; Cyr, D.D.; Gorlach, J.; Mayo, J.M.; Hu, A.; Goff, S.; Schmid, J.; Ligon, J.M. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol., 2000, 7(2), 97-109.
[http://dx.doi.org/10.1016/S1074-5521(00)00075-2] [PMID: 10662695]
[5]
Kralova, K.; Loos, D.; Sersen, F.; Sidoova, E. QSAR study concerning photosynthesis inhibition in algae and plant chloroplasts by 2-alkylthio-6-R-benzothiazoles. I. 2-Alkylthio-6-aminobenzo-thiazoles, 3-(2-alkyltio-6-benzothiazolylaminomethyl)-2-benzothia-zolinethiones, 3-(2-alkylthio-6-benzothiazolyl-amino-methyl)-6-bromo-2-benzothiazolinones. Chem. Pap., 1994, 48(6), 198-202.
[6]
Jubie, S.; Gowramma, B.; Nitin, K.; Jawahar, N.; Kalirajan, R.; Gomathy, S.; Sankar, S.; Elango, K. Synthesis and biological evaluation of some 3-(methoxy phenyl)-2-aryl-thiazolidin-4-one derivatives. Indian J. Pharm. Sci., 2009, 1(1), 32-38.
[7]
Gurupadayya, B.M.; Gopal, M.; Padmashali, B.; Manohara, Y.N. Synthesis and pharmacological evaluation of azetidin-2-ones and thiazolidin-4-ones encompassing benzothiazole. Indian J. Pharm. Sci., 2008, 70(5), 572-577.
[http://dx.doi.org/10.4103/0250-474X.45393] [PMID: 21394251]
[8]
Laczkowski, K.Z.; Biernasiuk, A.; Baranowska-Laczkowska, A.; Misiura, K.; Malm, A.; Plech, T.; Paneth, A. Synthesis, antibacterial activity, interaction with nucleobase and molecular docking studies of 4-formylbenzoic acid based thiazoles. Med. Chem., 2016, 12(6), 553-562.
[http://dx.doi.org/10.2174/1573406412666160201121310] [PMID: 26833073]
[9]
Bishayee, A.; Karmakar, R.; Mandal, A.; Kundu, S.N.; Chatterjee, M. Vanadium-mediated chemoprotection against chemical hepatocarcinogenesis in rats: haematological and histological characteristics. Eur. J. Cancer Prev., 1997, 6(1), 58-70.
[http://dx.doi.org/10.1097/00008469-199702000-00010] [PMID: 9161814]
[10]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N.N. -(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[11]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[12]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, analgesic and anti-ulcerogenic activities of novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[13]
Karade, H.N.; Acharya, B.N.; Sathe, M.; Kaushik, M.P. Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids. Med. Chem. Res., 2008, 17(1), 19-29.
[http://dx.doi.org/10.1007/s00044-008-9089-0]
[14]
Vengurlekar, S.; Prachand, S.; Jain, S.; Gupta, R. Synthesis and evaluation of some thiazole derivatives as an antifungal agent. Int. J. Pharm. Life Sci., 2014, 5(1), 3526-3530.
[15]
Pattan, S.; Dighe, N.; Nirmal, S.; Merekar, A.; Laware, R.; Shinde, H.; Musmade, D. Synthesis and biological evaluation of some substituted amino thiazole derivatives. Asian J. Res. Chem, 2009, 2(1), 196-201.
[16]
Ergenç, N.; Çapan, G.; Günay, N.S.; Özkirimli, S.; Güngör, M.; Özbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm. (Weinheim), 1999, 332(10), 343-347.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343: AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[17]
Andreani, A.; Rambaldi, M.; Mascellani, G.; Rugarli, P. Synthesis and diuretic activity of imidazo [2, 1-b] thiazole acetohydrazones. Eur. J. Med. Chem., 1987, 22(1), 19-22.
[http://dx.doi.org/10.1016/0223-5234(87)90169-3]
[18]
Koufaki, M.; Kiziridi, C.; Nikoloudaki, F.; Alexis, M.N. Design and synthesis of 1,2-dithiolane derivatives and evaluation of their neuroprotective activity. Bioorg. Med. Chem. Lett., 2007, 17(15), 4223-4227.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.036] [PMID: 17531485]
[19]
Abele, E.; Abele, R.; Lukevics, E. Oximes of five-membered heterocyclic compounds with two heteroatoms 2. Reactions and biological activity. Chem. Heterocycl. Compd., 2007, 43(1), 945-977.
[http://dx.doi.org/10.1007/s10593-007-0151-5]
[20]
Arora, P.; Narang, R.; Nayak, S.K.; Singh, S.K.; Judge, V. 2, 4-Disubstituted thiazoles as multitargated bioactive molecules. Med. Chem. Res., 2016, 25(9), 1717-1743.
[http://dx.doi.org/10.1007/s00044-016-1610-2]
[21]
Becan, L. Biological activity of thiazolo[4,5-d]pyrimidine derivatives. Chem. News, 2013, 67, 1051-1074.
[22]
Devprakash, A.; Bhoi, U.K. A complete review of thiazolidine-4-ones. J. Pharm. Res., 2011, 4, 2436-2440.
[23]
Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles: having diverse biological activities. Med. Chem. Res., 2012, 21(8), 2123-2132.
[http://dx.doi.org/10.1007/s00044-011-9685-2]
[24]
Morey, P. Ultrasonic Insight into Substituted thiazoles and its biological activity. Res. J. Chem. Sci., 2015, 5, 69-76.
[25]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97, 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[26]
Sharma, P.C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D.P. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem., 2013, 28(2), 240-266.
[http://dx.doi.org/10.3109/14756366.2012.720572] [PMID: 23030043]
[27]
Centers for Disease Control and Prevention (CDC). Available at: . https://www.cdc.gov/sars/about/fs-sars.html (accessed July 2018).
[28]
WHO. Available at: . http://www.who.int/mediacentre/factsheets/mers-cov/en/ (accessed July 2018).
[29]
Centers for Disease Control and Prevention (CDC). Available at:. https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html (accessed July 2018)
[30]
WHO. Available at: . http://www.who.int/gho/hiv/en/ (accessed July 2018)
[31]
WHO; Dengue and severe dengue, Available at: . http://www.who.int/mediacentre/factsheets/fs117/en/ (accessed July 2018)
[32]
WHO; New hepatitis data highlight need for urgent global response, Available at: . http://www.who.int/mediacentre/news/releases/2017/glo-bal-hepatitis-report/en/ (accessed July 2018)
[33]
WHO. Available at: . http://www.who.int/hepatitis/en/ (accessed July 2018)
[34]
[35]
Baldanti, F.; Underwood, M.R.; Stanat, S.C.; Biron, K.K.; Chou, S.; Sarasini, A.; Silini, E.; Gerna, G. Single amino acid changes in the DNA polymerase confer foscarnet resistance and slow-growth phenotype, while mutations in the UL97-encoded phosphotransferase confer ganciclovir resistance in three double-resistant human cytomegalovirus strains recovered from patients with AIDS. J. Virol., 1996, 70(3), 1390-1395.
[PMID: 8627655]
[36]
Chou, S.; Guentzel, S.; Michels, K.R.; Miner, R.C.; Drew, W.L. Frequency of UL97 phosphotransferase mutations related to ganciclovir resistance in clinical cytomegalovirus isolates. J. Infect. Dis., 1995, 172(1), 239-242.
[http://dx.doi.org/10.1093/infdis/172.1.239] [PMID: 7797920]
[37]
Ghany, M.G.; Doo, E.C. Antiviral resistance and hepatitis B therapy. Hepatology, 2009, 49((5))( (Suppl)), S174-S184.
[http://dx.doi.org/10.1002/hep.22900] [PMID: 19399794]
[38]
Zoulim, F. Hepatitis B virus resistance to antiviral drugs: where are we going? Liver Int., 2011, 31(Suppl. 1), 111-116.
[http://dx.doi.org/10.1111/j.1478-3231.2010.02399.x] [PMID: 21205147]
[39]
Morfin, F.; Thouvenot, D. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol., 2003, 26(1), 29-37.
[http://dx.doi.org/10.1016/S1386-6532(02)00263-9] [PMID: 12589832]
[40]
Clavel, F.; Hance, A.J. HIV drug resistance. N. Engl. J. Med., 2004, 350(10), 1023-1035.
[http://dx.doi.org/10.1056/NEJMra025195] [PMID: 14999114]
[41]
Marzolini, C.; Telenti, A.; Decosterd, L.A.; Greub, G.; Biollaz, J.; Buclin, T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS, 2001, 15(1), 71-75.
[http://dx.doi.org/10.1097/00002030-200101050-00011] [PMID: 11192870]
[42]
Ammassari, A.; Murri, R.; Pezzotti, P.; Trotta, M.P.; Ravasio, L.; De Longis, P.; Lo Caputo, S.; Narciso, P.; Pauluzzi, S.; Carosi, G.; Nappa, S.; Piano, P.; Izzo, C.M.; Lichtner, M.; Rezza, G.; Monforte, A.; Ippolito, G.; d’Arminio Moroni, M.; Wu, A.W.; Antinori, A. Self-reported symptoms and medication side effects influence adherence to highly active antiretroviral therapy in persons with HIV infection. J. Acquir. Immune Defic. Syndr., 2001, 28(5), 445-449.
[http://dx.doi.org/10.1097/00042560-200112150-00006] [PMID: 11744832]
[43]
Ewers, E.C.; Shah, P.A.; Carmichael, M.G.; Ferguson, T.M. Concurrent systemic chemoimmunotherapy and sofosbuvir-based antiviral treatment in a hepatitis C virus-infected patient with diffuse large B-cell lymphoma. Open Forum Infect. Dis., 2016, 3, 223.
[44]
Fried, M.W. Side effects of therapy of hepatitis C and their management. Hepatology, 2002, 36(5 )( Suppl 1), S237-S244.
[PMID: 12407599]
[45]
Hanson, K.E.; Swaminathan, S. Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol., 2015, 10(10), 1545-1548.
[http://dx.doi.org/10.2217/fmb.15.82] [PMID: 26437628]
[46]
Brennan, T.; Shrank, W. New expensive treatments for hepatitis C infection. JAMA, 2014, 312(6), 593-594.
[http://dx.doi.org/10.1001/jama.2014.8897] [PMID: 25038617]
[47]
Available at. https://www.drugbank.ca/ (accessed July 2018).
[48]
Ahgren, C.; Backro, K.; Bell, F.W.; Cantrell, A.S.; Clemens, M.; Colacino, J.M.; Deeter, J.B.; Engelhardt, J.A.; Hogberg, M.; Jaskunas, S.R. The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother., 1995, 39(6), 1329-1335.
[http://dx.doi.org/10.1128/AAC.39.6.1329] [PMID: 7574525]
[49]
Stefanska, J.; Nowicka, G.; Struga, M.; Szulczyk, D.; Koziol, A.E.; Augustynowicz-Kopec, E.; Napiorkowska, A.; Bielenica, A.; Filipowski, W.; Filipowska, A.; Drzewiecka, A.; Giliberti, G.; Madeddu, S.; Boi, S.; La Colla, P.; Sanna, G. Antimicrobial and anti-biofilm activity of thiourea derivatives incorporating a 2-aminothiazole scaffold. Chem. Pharm. Bull. (Tokyo), 2015, 63(3), 225-236.
[http://dx.doi.org/10.1248/cpb.c14-00837] [PMID: 25757494]
[50]
Regnier, T.; Sarma, D.; Hidaka, K.; Bacha, U.; Freire, E.; Hayashi, Y.; Kiso, Y. New developments for the design, synthesis and biological evaluation of potent SARS-CoV 3CL(pro) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(10), 2722-2727.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.118] [PMID: 19362479]
[51]
Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S.E.; Freire, E.; Hayashi, Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem., 2013, 21(2), 412-424.
[http://dx.doi.org/10.1016/j.bmc.2012.11.017] [PMID: 23245752]
[52]
Cianci, C.; Yu, K-L.; Combrink, K.; Sin, N.; Pearce, B.; Wang, A.; Civiello, R.; Voss, S.; Luo, G.; Kadow, K.; Genovesi, E.V.; Venables, B.; Gulgeze, H.; Trehan, A.; James, J.; Lamb, L.; Medina, I.; Roach, J.; Yang, Z.; Zadjura, L.; Colonno, R.; Clark, J.; Meanwell, N.; Krystal, M. Orally active fusion inhibitor of respiratory syncytial virus. Antimicrob. Agents Chemother., 2004, 48(2), 413-422.
[http://dx.doi.org/10.1128/AAC.48.2.413-422.2004] [PMID: 14742189]
[53]
Pryde, D.C.; Tran, T.D.; Gardner, I.; Bright, H.; Stupple, P.; Galan, S.; Alsop, L.; Watson, L.; Middleton, D.S.; Dayal, S.; Platts, M.; Murray, E.J.; Parkinson, T.; Webster, R. Non-benzimidazole containing inhibitors of respiratory syncytial virus. Bioorg. Med. Chem. Lett., 2013, 23(3), 827-833.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.062] [PMID: 23265891]
[54]
Duca, M.; Malnuit, V.; Barbault, F.; Benhida, R. Design of novel RNA ligands that bind stem-bulge HIV-1 TAR RNA. Chem. Commun. (Camb.), 2010, 46(33), 6162-6164.
[http://dx.doi.org/10.1039/c0cc00645a] [PMID: 20652190]
[55]
Joly, J-P.; Mata, G.; Eldin, P.; Briant, L.; Fontaine-Vive, F.; Duca, M.; Benhida, R. Artificial nucleobase-amino acid conjugates: a new class of TAR RNA binding agents. Chemistry, 2014, 20(7), 2071-2079.
[http://dx.doi.org/10.1002/chem.201303664] [PMID: 24431237]
[56]
Kim, J.; Ok, T.; Park, C.; So, W.; Jo, M.; Kim, Y.; Seo, M.; Lee, D.; Jo, S.; Ko, Y.; Choi, I.; Park, Y.; Yoon, J.; Ju, M.K.; Ahn, J.; Kim, J.; Han, S.J.; Kim, T.H.; Cechetto, J.; Nam, J.; Liuzzi, M.; Sommer, P.; No, Z. A novel 3,4-dihydropyrimidin-2(1H)-one: HIV-1 replication inhibitors with improved metabolic stability. Bioorg. Med. Chem. Lett., 2012, 22(7), 2522-2526.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.133] [PMID: 22374216]
[57]
Distinto, S.; Esposito, F.; Kirchmair, J.; Cardia, M.C.; Gaspari, M.; Maccioni, E.; Alcaro, S.; Markt, P.; Wolber, G.; Zinzula, L.; Tramontano, E. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint- and pharmacophore-based virtual screening approach. Eur. J. Med. Chem., 2012, 50, 216-229.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.056] [PMID: 22361685]
[58]
Meleddu, R.; Distinto, S.; Corona, A.; Bianco, G.; Cannas, V.; Esposito, F.; Artese, A.; Alcaro, S.; Matyus, P.; Bogdan, D.; Cottiglia, F.; Tramontano, E.; Maccioni, E. (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one derivatives as dual inhibitors of HIV-1 reverse transcriptase. Eur. J. Med. Chem., 2015, 93, 452-460.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.032] [PMID: 25728026]
[59]
Babu, Y.S.; Chand, P.; Bantia, S.; Kotian, P.; Dehghani, A.; El-Kattan, Y.; Lin, T-H.; Hutchison, T.L.; Elliott, A.J.; Parker, C.D.; Ananth, S.L.; Horn, L.L.; Laver, G.W.; Montgomery, J.A. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem., 2000, 43(19), 3482-3486.
[http://dx.doi.org/10.1021/jm0002679] [PMID: 11000002]
[60]
Liu, Y.; Zhang, L.; Gong, J.; Fang, H.; Liu, A.; Du, G.; Xu, W. Design, synthesis, and biological activity of thiazole derivatives as novel influenza neuraminidase inhibitors. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 506-513.
[http://dx.doi.org/10.3109/14756366.2010.534732] [PMID: 21143042]
[61]
Barbier, J.; Wegner, J.; Benson, S.; Gentzsch, J.; Pietschmann, T.; Kirschning, A. Total synthesis of a noricumazole A library and evaluation of HCV inhibition. Chemistry, 2012, 18(29), 9083-9090.
[http://dx.doi.org/10.1002/chem.201104042] [PMID: 22696300]
[62]
Kanda, T.; Yokosuka, O.; Omata, M. Faldaprevir for the treatment of hepatitis C. Int. J. Mol. Sci., 2015, 16(3), 4985-4996.
[http://dx.doi.org/10.3390/ijms16034985] [PMID: 25749475]
[63]
Goudreau, N.; Llinàs-Brunet, M. The therapeutic potential of NS3 protease inhibitors in HCV infection. Expert Opin. Investig. Drugs, 2005, 14(9), 1129-1144.
[http://dx.doi.org/10.1517/13543784.14.9.1129] [PMID: 16144497]
[64]
Bailey, M.D.; Halmos, T.; Lemke, C.T. Discovery of novel P2 substituted 4-biaryl proline inhibitors of hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett., 2013, 23(15), 4436-4440.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.046] [PMID: 23773864]
[65]
Llinàs-Brunet, M.; Bailey, M.D.; Bolger, G.; Brochu, C.; Faucher, A-M.; Ferland, J.M.; Garneau, M.; Ghiro, E.; Gorys, V.; Grand-Maître, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard, F.; Poirier, M.; Rhéaume, M.; Tsantrizos, Y.S.; Lamarre, D. Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J. Med. Chem., 2004, 47(7), 1605-1608.
[http://dx.doi.org/10.1021/jm0342414] [PMID: 15027850]
[66]
Parsy, C.; Alexandre, F-R.; Brandt, G.; Caillet, C.; Cappelle, S.; Chaves, D.; Convard, T.; Derock, M.; Gloux, D.; Griffon, Y.; Lallos, L.; Leroy, F.; Liuzzi, M.; Loi, A.G.; Moulat, L.; Musiu, C.; Rahali, H.; Roques, V.; Seifer, M.; Standring, D.; Surleraux, D. Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg. Med. Chem. Lett., 2014, 24(18), 4444-4449.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.002] [PMID: 25155387]
[67]
Parsy, C.C.; Alexandre, F.R.; Bidau, V.; Bonnaterre, F.; Brandt, G.; Caillet, C.; Cappelle, S.; Chaves, D.; Convard, T.; Derock, M.; Gloux, D.; Griffon, Y.; Lallos, L.B.; Leroy, F.; Liuzzi, M.; Loi, A.G.; Moulat, L.; Chiara, M.; Rahali, H.; Roques, V.; Rosinovsky, E.; Savin, S.; Seifer, M.; Standring, D.; Surleraux, D. Discovery and structural diversity of the hepatitis C virus NS3/4A serine protease inhibitor series leading to clinical candidate IDX320. Bioorg. Med. Chem. Lett., 2015, 25(22), 5427-5436.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.009] [PMID: 26410074]
[68]
Zhong, Q.F.; Liu, R.; Liu, G. Structure-activity relationship studies on quinoxalin-2(1H)-one derivatives containing thiazol-2-amine against hepatitis C virus leading to the discovery of BH6870. Mol. Divers., 2015, 19(4), 829-853.
[http://dx.doi.org/10.1007/s11030-015-9610-6] [PMID: 26205408]
[69]
Lin, H.M.; Wang, J.C.; Hu, H.S.; Wu, P.S.; Yang, C.C.; Wu, C.P.; Pu, S.Y.; Hsu, T.A.; Jiaang, W.T.; Chao, Y.S.; Chern, J.H.; Yeh, T.K.; Yueh, A. Resistance analysis and characterization of a thiazole analogue, BP008, as a potent hepatitis C virus NS5A inhibitor. Antimicrob. Agents Chemother., 2012, 56(1), 44-53.
[http://dx.doi.org/10.1128/AAC.00599-11] [PMID: 22006008]
[70]
Cruz, D.J.; Koishi, A.C.; Taniguchi, J.B.; Li, X.; Milan Bonotto, R.; No, J.H.; Kim, K.H.; Baek, S.; Kim, H.Y.; Windisch, M.P.; Pamplona Mosimann, A.L.; de Borba, L.; Liuzzi, M.; Hansen, M.A.; Duarte dos Santos, C.N.; Freitas-Junior, L.H. High content screening of a kinase-focused library reveals compounds broadly-active against dengue viruses. PLoS Negl. Trop. Dis., 2013, 7(2)e2073
[http://dx.doi.org/10.1371/journal.pntd.0002073] [PMID: 23437413]
[71]
Décor, A.; Grand-Maître, C.; Hucke, O.; O’Meara, J.; Kuhn, C.; Constantineau-Forget, L.; Brochu, C.; Malenfant, E.; Bertrand-Laperle, M.; Bordeleau, J.; Ghiro, E.; Pesant, M.; Fazal, G.; Gorys, V.; Little, M.; Boucher, C.; Bordeleau, S.; Turcotte, P.; Guo, T.; Garneau, M.; Spickler, C.; Gauthier, A. Design, synthesis and biological evaluation of novel aminothiazoles as antiviral compounds acting against human rhinovirus. Bioorg. Med. Chem. Lett., 2013, 23(13), 3841-3847.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.077] [PMID: 23726345]
[72]
El-Sabbagh, O.I. Synthesis of some new benzisothiazolone and benzenesulfonamide derivatives of biological interest starting from saccharin sodium. Arch. Pharm. (Weinheim), 2013, 346(10), 733-742.
[http://dx.doi.org/10.1002/ardp.201300110] [PMID: 24038507]
[73]
Li, F-Y.; Guo, X-F.; Fan, Z-J.; Zhang, Y-Q.; Zong, G-N.; Qian, X-L.; Ma, L-Y.; Chen, L.; Zhu, Y-J.; Tatiana, K.; Morzherin, Y.Y.; Belskaya, N.P. Synthesis and biological activities of novel 2-amino-1,3-thiazole-4-carboxylic acid derivatives. Chin. Chem. Lett., 2015, 26(10), 1315-1318.
[http://dx.doi.org/10.1016/j.cclet.2015.05.040]
[74]
Jeong, K.W.; Lee, J.H.; Park, S.M.; Choi, J.H.; Jeong, D.Y.; Choi, D.H.; Nam, Y.; Park, J.H.; Lee, K.N.; Kim, S.M.; Ku, J.M. Synthesis and in-vitro evaluation of 2-amino-4-arylthiazole as inhibitor of 3D polymerase against foot-and-mouth disease (FMD). Eur. J. Med. Chem., 2015, 102, 387-397.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.020] [PMID: 26301555]
[75]
Jadav, S.S.; Kaptein, S.; Timiri, A.; De Burghgraeve, T.; Badavath, V.N.; Ganesan, R.; Sinha, B.N.; Neyts, J.; Leyssen, P.; Jayaprakash, V. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1747-1752.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.059] [PMID: 25791449]
[76]
Zhou, Z.; Khaliq, M.; Suk, J-E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[77]
Dawood, K.M.; Eldebss, T.M.; El-Zahabi, H.S.; Yousef, M.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur. J. Med. Chem., 2015, 102, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.005] [PMID: 26291036]
[78]
Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem., 2008, 51(15), 4660-4671.
[http://dx.doi.org/10.1021/jm800412d] [PMID: 18610998]
[79]
Pacca, C.C.; Marques, R.E.; Espindola, J.W.P.; Filho, G.B.O.O.; Leite, A.C.L.; Teixeira, M.M.; Nogueira, M.L. Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus. Biomed. Pharmacother., 2017, 87, 381-387.
[http://dx.doi.org/10.1016/j.biopha.2016.12.112] [PMID: 28068627]
[80]
Madni, M.; Hameed, S.; Ahmed, M.N.; Tahir, M.N.; Al-Masoudi, N.A.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives. Med. Chem. Res., 2017, 26(10), 2653-2665.
[http://dx.doi.org/10.1007/s00044-017-1963-1]
[81]
Osman, H.; Yusufzai, S.K.; Khan, M.S.; Razik, B.M.A.; Sulaiman, O.; Mohamad, S.; Gansau, J.A.; Ezzat, M.O.; Parumasivam, T.; Hassan, M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct., 2018, 1166, 147-154.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.031]
[82]
Mayhoub, A.S.; Khaliq, M.; Botting, C.; Li, Z.; Kuhn, R.J.; Cushman, M. An investigation of phenylthiazole antiflaviviral agents. Bioorg. Med. Chem., 2011, 19(12), 3845-3854.
[http://dx.doi.org/10.1016/j.bmc.2011.04.041] [PMID: 21612931]
[83]
Mayhoub, A.S.; Khaliq, M.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of thiazoles targeting flavivirus envelope proteins. J. Med. Chem., 2011, 54(6), 1704-1714.
[http://dx.doi.org/10.1021/jm1013538] [PMID: 21355607]
[84]
Zhan, P.; Wang, L.; Liu, H.; Chen, X.; Li, X.; Jiang, X.; Zhang, Q.; Liu, X.; Pannecouque, C.; Naesens, L.; De Clercq, E.; Liu, A.; Du, G. Arylazolyl(azinyl)thioacetanilide. Part 9: Synthesis and biological investigation of thiazolylthioacetamides derivatives as a novel class of potential antiviral agents. Arch. Pharm. Res., 2012, 35(6), 975-986.
[http://dx.doi.org/10.1007/s12272-012-0604-y] [PMID: 22870806]
[85]
Xu, Z.; Ba, M.; Zhou, H.; Cao, Y.; Tang, C.; Yang, Y.; He, R.; Liang, Y.; Zhang, X.; Li, Z.; Zhu, L.; Guo, Y.; Guo, C. 2,4,5-Trisubstituted thiazole derivatives: a novel and potent class of non-nucleoside inhibitors of wild type and mutant HIV-1 reverse transcriptase. Eur. J. Med. Chem., 2014, 85, 27-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.072] [PMID: 25072874]
[86]
Atamanyuk, D.; Zimenkovsky, B.; Atamanyuk, V.; Lesyk, R. 5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as versatile building block for novel biorelevant small molecules with thiopyrano[2,3-d][1,3]thiazole core. Synth. Commun., 2013, 44(10), 237-244.
[http://dx.doi.org/10.1080/00397911.2013.800552]
[87]
Barradas, J.S.; Errea, M.I.; D’Accorso, N.B.; Sepúlveda, C.S.; Damonte, E.B. Imidazo[2,1-b]thiazole carbohydrate derivatives: Synthesis and antiviral activity against Junin virus, agent of Argentine hemorrhagic fever. Eur. J. Med. Chem., 2011, 46(1), 259-264.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.012] [PMID: 21115214]
[88]
Barradas, J.S.; Errea, M.I.; Sepúlveda, C.; Damonte, E.B.; D’accorso, N.B. Microwave-assisted synthesis of pyrrolo[2,1-b]thiazoles linked to a carbohydrate moiety. J. Heterocycl. Chem., 2014, 51(1), 96-100.
[http://dx.doi.org/10.1002/jhet.1957]
[89]
Shotwell, J.B.; Baskaran, S.; Chong, P.; Creech, K.L.; Crosby, R.M.; Dickson, H.; Fang, J.; Garrido, D.; Mathis, A.; Maung, J.; Parks, D.J.; Pouliot, J.J.; Price, D.J.; Rai, R.; Seal, J.W., III; Schmitz, U.; Tai, V.W.; Thomson, M.; Xie, M.; Xiong, Z.Z.; Peat, A.J. Imidazo [1, 2-a] pyridines that directly interact with hepatitis C NS4B: initial preclinical characterization. ACS Med. Chem. Lett., 2012, 3(7), 565-569.
[http://dx.doi.org/10.1021/ml300090x] [PMID: 24900511]
[90]
Wang, N.Y.; Xu, Y.; Zuo, W.Q.; Xiao, K.J.; Liu, L.; Zeng, X.X.; You, X.Y.; Zhang, L.D.; Gao, C.; Liu, Z.H.; Ye, T.H.; Xia, Y.; Xiong, Y.; Song, X.J.; Lei, Q.; Peng, C.T.; Tang, H.; Yang, S.Y.; Wei, Y.Q.; Yu, L.T. Discovery of imidazo[2,1-b]thiazole HCV NS4B inhibitors exhibiting synergistic effect with other direct-acting antiviral agents. J. Med. Chem., 2015, 58(6), 2764-2778.
[http://dx.doi.org/10.1021/jm501934n] [PMID: 25710739]
[91]
Ghosh, A.K.; Rao, K.V.; Nyalapatla, P.R.; Osswald, H.L.; Martyr, C.D.; Aoki, M.; Hayashi, H.; Agniswamy, J.; Wang, Y-F.; Bulut, H.; Das, D.; Weber, I.T.; Mitsuya, H. Design and development of highly potent HIV-1 protease inhibitors with a crown-like oxotricyclic core as the P2-ligand to combat multidrug-resistant HIV variants. J. Med. Chem., 2017, 60(10), 4267-4278.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00172] [PMID: 28418652]
[92]
Ulusoy Güzeldemirci, N.; Karaman, B.; Küçükbasmaci, Ö. Antibacterial, antitubercular and antiviral activity evaluations of some arylidenehydrazide derivatives bearing imidazo [2, 1-b] thiazole moiety. Turk. J. Pharm. Sci., 2017, 14(2), 157-163.
[http://dx.doi.org/10.4274/tjps.25743]
[93]
Chen, H.; Guo, Z.; Yin, Q.; Duan, X.; Gu, Y.; Li, X. Design, synthesis and HIV-RT inhibitory activity of novel thiazolidin-4-one derivatives. Front. Chem. Sci. Eng., 2011, 5(2), 231-237.
[http://dx.doi.org/10.1007/s11705-010-1022-7]
[94]
Saeed, A.; Al-Masoudi, N.A.; Ahmed, A.A.; Pannecouque, C. New substituted thiazol-2-ylidene-benzamides and their reaction with 1-Aza-2-azoniaallene salts. Synthesis and anti-HIV activity. Z. Naturforsch. B, 2011, 66(5), 512-520.
[http://dx.doi.org/10.1515/znb-2011-0512]
[95]
Saeed, A.; Al-Masoudi, N.A.; Pannecouque, C. In-vitro anti-HIV activity of new thiazol-2-ylidene substituted benzamide analogues. Der Pharma Chem., 2012, 4(1), 106-115.
[96]
Al-Ansary, G.H.; Ismail, M.A.; Abou El Ella, D.A.; Eid, S.; Abouzid, K.A. Molecular design and synthesis of HCV inhibitors based on thiazolone scaffold. Eur. J. Med. Chem., 2013, 68, 19-32.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.006] [PMID: 23933047]
[97]
Lozynskyi, A.; Golota, S.; Zimenkovsky, B.; Atamanyuk, D.; Gzella, A.; Lesyk, R. Synthesis, anticancer and antiviral activities of novel thiopyrano[2,3-d]thiazole-6-carbaldehydes. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(9), 1245-1249.
[http://dx.doi.org/10.1080/10426507.2016.1166108]
[98]
Güzeldemirci, N.U.; Pehlivan, E.; Naesens, L. Synthesis and antiviral activity evaluation of new 4-thiazolidinones bearing an imidazo[2,1-b]thiazole moiety. Marmara Pharm. J., 2018, 22(2), 237-248.
[http://dx.doi.org/10.12991/mpj.2018.61]
[99]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27, 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[100]
Mourer, M.; Psychogios, N.; Laumond, G.; Aubertin, A.M.; Regnouf-de-Vains, J.B. Synthesis and anti-HIV evaluation of water-soluble calixarene-based bithiazolyl podands. Bioorg. Med. Chem., 2010, 18(1), 36-45.
[http://dx.doi.org/10.1016/j.bmc.2009.11.016] [PMID: 19944610]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [4 - 23]
Pages: 20
DOI: 10.2174/1573406415666190614101253
Price: $65

Article Metrics

PDF: 37
HTML: 6
EPUB: 2
PRC: 1