Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold

Author(s): Saira Afzal, Sumera Zaib, Behzad Jafari, Peter Langer, Joanna Lecka, Jean Sévigny, Jamshed Iqbal*

Journal Name: Medicinal Chemistry

Volume 16 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) terminate nucleotide signaling via the hydrolysis of extracellular nucleoside-5'-triphosphate and nucleoside- 5'-diphosphate, to nucleoside-5'-monophosphate and composed of eight Ca2+/Mg2+ dependent ectonucleotidases (NTPDase1-8). Extracellular nucleotides are involved in a variety of physiological mechanisms. However, they are rapidly inactivated by ectonucleotidases that are involved in the sequential removal of phosphate group from nucleotides with the release of inorganic phosphate and their respective nucleoside. Ectonucleoside triphosphate diphosphohydrolases (NTPDases) represent the key enzymes responsible for nucleotides hydrolysis and their overexpression has been related to certain pathological conditions. Therefore, the inhibitors of NTPDases are of particular importance in order to investigate their potential to treat various diseases e.g., cancer, ischemia and other disorders of the cardiovascular and immune system.

Methods: Keeping in view the importance of NTPDase inhibitors, a series of thiadiazolopyrimidones were evaluated for their potential inhibitory activity towards NTPDases by the malachite green assay.

Results: The results suggested that some of the compounds were found as non-selective inhibitors of isozyme of NTPDases, however, most of the compounds act as potent and selective inhibitors. In case of substituted amino derivatives (4c-m), the compounds 4m (IC50 = 1.13 ± 0.09 μM) and 4g (IC50 = 1.72 ± 0.08 μM) were found to be the most potent inhibitors of h-NTPDase1 and 2, respectively. Whereas, compound 4d showed the best inhibitory potential for both h-NTPDase3 (IC50 = 1.25 ± 0.06 μM) and h-NTPDase8 (0.21 ± 0.02 μM). Among 5a-t derivatives, compounds 5e (IC50 = 2.52 ± 0.15 μM), 5p (IC50 = 3.17 ± 0.05 μM), 5n (IC50 = 1.22 ± 0.06 μM) and 5b (IC50 = 0.35 ± 0.001 μM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. Interestingly, the inhibitory concentration values of above-mentioned inhibitors were several folds greater than suramin, a reference control. In order to determine the binding interactions, molecular docking studies of the most potent inhibitors were conducted into the homology models of NTPDases and the putative binding analysis further confirmed that selective and potent compounds bind deep inside the active pocket of the respective enzymes.

Conclusion: The docking analysis proposed that the inhibitory activity correlates with the hydrogen bonds inside the binding pocket. Thus, these derivatives are of interest and may further be investigated for their importance in medicinal chemistry.

Keywords: Ectonucleotidases, thiadiazolopyrimidones, nucleoside triphosphate diphosphohydrolases (NTPDase), molecular docking, nucleoside-5'-triphosphate, ischemia.

[1]
Grinthal, A.; Guidotti, G. Transmembrane domains confer different substrate specificities and adenosine diphosphate hydrolysis mechanisms on CD39, CD39L1, and chimeras. Biochemistry, 2002, 41(6), 1947-1956.
[http://dx.doi.org/10.1021/bi015563h] [PMID: 11827541]
[2]
Baqi, Y.; Weyler, S.; Iqbal, J.; Zimmermann, H.; Müller, C.E. Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal., 2009, 5(1), 91-106.
[http://dx.doi.org/10.1007/s11302-008-9103-5] [PMID: 18528783]
[3]
Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta, 2008, 1783(5), 673-694.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.024] [PMID: 18302942]
[4]
Munkonda, M.N.; Kauffenstein, G.; Kukulski, F.; Lévesque, S.A.; Legendre, C.; Pelletier, J.; Lavoie, E.G.; Lecka, J.; Sévigny, J. Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem. Pharmacol., 2007, 74(10), 1524-1534.
[http://dx.doi.org/10.1016/j.bcp.2007.07.033] [PMID: 17727821]
[5]
Künzli, B.M.; Berberat, P.O.; Giese, T.; Csizmadia, E.; Kaczmarek, E.; Baker, C.; Halaceli, I.; Büchler, M.W.; Friess, H.; Robson, S.C. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G223-G230.
[http://dx.doi.org/10.1152/ajpgi.00259.2006] [PMID: 16920697]
[6]
White, N.; Burnstock, G. P2 receptors and cancer. Trends Pharmacol. Sci., 2006, 27(4), 211-217.
[http://dx.doi.org/10.1016/j.tips.2006.02.004] [PMID: 16530853]
[7]
Stella, J.; Bavaresco, L.; Braganhol, E.; Rockenbach, L.; Farias, P.F.; Wink, M.R.; Azambuja, A.A.; Barrios, C.H.; Morrone, F.B.; Oliveira Battastini, A.M. Differential ectonucleotidase expression in human bladder cancer cell lines. Urol. Oncol., 2010, 28(3), 260-267.
[http://dx.doi.org/10.1016/j.urolonc.2009.01.035] [PMID: 19372055]
[8]
Gendron, F.P.; Benrezzak, O.; Krugh, B.W.; Kong, Q.; Weisman, G.A.; Beaudoin, A.R. Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr. Drug Targets, 2002, 3(3), 229-245.
[http://dx.doi.org/10.2174/1389450023347713] [PMID: 12041737]
[9]
Robson, S.C.; Sévigny, J.; Zimmermann, H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal., 2006, 2(2), 409-430.
[http://dx.doi.org/10.1007/s11302-006-9003-5] [PMID: 18404480]
[10]
Zebisch, M.; Sträter, N. Characterization of Rat NTPDase1, -2, and -3 ectodomains refolded from bacterial inclusion bodies. Biochemistry, 2007, 46(42), 11945-11956.
[http://dx.doi.org/10.1021/bi701103y] [PMID: 17910474]
[11]
Vorhoff, T.; Zimmermann, H.; Pelletier, J.; Sévigny, J.; Braun, N. Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal., 2005, 1(3), 259-270.
[http://dx.doi.org/10.1007/s11302-005-6314-x] [PMID: 18404510]
[12]
Lee, S.Y.; Fiene, A.; Li, W.; Hanck, T.; Brylev, K.A.; Fedorov, V.E.; Lecka, J.; Haider, A.; Pietzsch, H.J.; Zimmermann, H.; Sévigny, J.; Kortz, U.; Stephan, H.; Müller, C.E. Polyoxometalates--potent and selective ecto-nucleotidase inhibitors. Biochem. Pharmacol., 2015, 93(2), 171-181.
[http://dx.doi.org/10.1016/j.bcp.2014.11.002] [PMID: 25449596]
[13]
Kanwal, K.K.M.; Salar, U.; Afzal, S.; Wadood, A.; Taha, M.; Perveen, S.; Khan, H.; Lecka, J.; Sévigny, J.; Iqbal, J. Schiff Bases of Tryptamine as Potent Nucleoside Triphosphate Diphosphohydrolases (NTPDase) Inhibitors: Synthesis and In Vitro Studies. Bioorg. Chem., 2019, 82, 253-266.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.046] [PMID: 30391856]
[14]
Peres, N.T.A.; Cunha, L.C.S.; Barbosa, M.L.A.; Santos, M.B.; de Oliveira, F.A.; de Jesus, A.M.R.; de Almeida, R.P. Infection of human Macrophages by Leishmania infantum is influenced by ecto-nucleotidases. Front. Immunol., 2018, 8, 1954.
[http://dx.doi.org/10.3389/fimmu.2017.01954] [PMID: 29379503]
[15]
Brunschweiger, A.; Iqbal, J.; Umbach, F.; Scheiff, A.B.; Munkonda, M.N.; Sévigny, J.; Knowles, A.F.; Müller, C.E. Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5′-carboxamide. J. Med. Chem., 2008, 51(15), 4518-4528.
[http://dx.doi.org/10.1021/jm800175e] [PMID: 18630897]
[16]
Gendron, F.P.; Halbfinger, E.; Fischer, B.; Duval, M.; D’Orléans-Juste, P.; Beaudoin, A.R. Novel inhibitors of nucleoside triphosphate diphosphohydrolases: chemical synthesis and biochemical and pharmacological characterizations. J. Med. Chem., 2000, 43(11), 2239-2247.
[http://dx.doi.org/10.1021/jm000020b] [PMID: 10841802]
[17]
Hayat, K.; Afzal, S.; Saeed, A.; Murtaza, A.; Ur Rahman, S.; Khan, K.M.; Saeed, A.; Zaib, S.; Lecka, J.; Sévigny, J.; Iqbal, J.; Hassan, A. Investigation of new quinoline derivatives as promising inhibitors of NTPDases: Synthesis, SAR analysis and molecular docking studies. Bioorg. Chem., 2019, 87, 218-226.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.019] [PMID: 30903944]
[18]
Sathisha, K.R.; Khanum, S.A.; Chandra, J.N.; Ayisha, F.; Balaji, S.; Marathe, G.K.; Gopal, S.; Rangappa, K.S. Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2-(phenoxymethyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one derivatives. Bioorg. Med. Chem., 2011, 19(1), 211-220.
[http://dx.doi.org/10.1016/j.bmc.2010.11.034] [PMID: 21163661]
[19]
Coller, B.S.; Craig, T.; Filizola, M.; McCoy, J.; Huang, W.; Shen, M. Patent, 2015, US2015(374697), A1.
[20]
Jiang, J.K.; McCoy, J.G.; Shen, M.; LeClair, C.A.; Huang, W.; Negri, A.; Li, J.; Blue, R.; Harrington, A.W.; Naini, S.; David, G., III; Choi, W.S.; Volpi, E.; Fernandez, J.; Babayeva, M.; Nedelman, M.A.; Filizola, M.; Coller, B.S.; Thomas, C.J. A novel class of ion displacement ligands as antagonists of the αIIbβ3 receptor that limit conformational reorganization of the receptor. Bioorg. Med. Chem. Lett., 2014, 24(4), 1148-1153.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.122] [PMID: 24461295]
[21]
Ravindra, K.C.; Vagdevi, H.M.; Vaidya, V.P. Synthesis and antimicrobial activity of novel naphtho[2,1-b]furo-5H-[3,2-d][1,3,4]thiadiazolo[3,2-a]pyrimidin-5-ones(08-2658OP). ARKIVOC, 2008, xi, 1-10.
[22]
Jafari, B.; Ospanov, M.; Ejaz, S.A.; Yelibayeva, N.; Khan, S.U.; Amjad, S.T.; Safarov, S.; Abilov, Z.A.; Turmukhanova, M.Z.; Kalugin, S.N.; Ehlers, P.; Lecka, J.; Sévigny, J.; Iqbal, J.; Langer, P. 2-Substituted 7-trifluoromethyl-thiadiazolopyrimidones as alkaline phosphatase inhibitors. Synthesis, structure activity relationship and molecular docking study. Eur. J. Med. Chem., 2018, 144, 116-127.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.068] [PMID: 29268128]
[23]
Kaczmarek, E.; Koziak, K.; Sévigny, J.; Siegel, J.B.; Anrather, J.; Beaudoin, A.R.; Bach, F.H.; Robson, S.C. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem., 1996, 271(51), 33116-33122.
[http://dx.doi.org/10.1074/jbc.271.51.33116] [PMID: 8955160]
[24]
Vlajkovic, S.M.; Housley, G.D.; Greenwood, D.; Thorne, P.R. Evidence for alternative splicing of ecto-ATPase associated with termination of purinergic transmission. Brain Res. Mol. Brain Res., 1999, 73(1-2), 85-92.
[http://dx.doi.org/10.1016/S0169-328X(99) 00244-2] [PMID: 10581401]
[25]
Knowles, A.F.; Chiang, W.C. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch. Biochem. Biophys., 2003, 418(2), 217-227.
[http://dx.doi.org/10.1016/j.abb.2003.08.007] [PMID: 14522593]
[26]
Smith, T.M.; Kirley, T.L. Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases1. Biochim. Biophys. Acta, 1998, 1386(1), 65-78.
[http://dx.doi.org/10.1016/S0167-4838(98)00063-6] [PMID: 9675246]
[27]
Kukulski, F.; Lévesque, S.A.; Lavoie, E.G.; Lecka, J.; Bigonnesse, F.; Knowles, A.F.; Robson, S.C.; Kirley, T.L.; Sévigny, J. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal., 2005, 1(2), 193-204.
[http://dx.doi.org/10.1007/s11302-005-6217-x] [PMID: 18404504]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Sévigny, J.; Sundberg, C.; Braun, N.; Guckelberger, O.; Csizmadia, E.; Qawi, I.; Imai, M.; Zimmermann, H.; Robson, S.C. Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood, 2002, 99(8), 2801-2809.
[http://dx.doi.org/10.1182/blood.V99.8.2801] [PMID: 11929769]
[30]
Baykov, A.A.; Evtushenko, O.A.; Avaeva, S.M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem., 1988, 171(2), 266-270.
[http://dx.doi.org/10.1016/0003-2697(88)90484-8] [PMID: 3044186]
[31]
Iqbal, J.; Shah, S.J.A. Molecular dynamic simulations reveal structural insights into substrate and inhibitor binding modes and functionality of Ecto-Nucleoside Triphosphate Diphosphohydrolases. Sci. Rep., 2018, 8(1), 2581.
[http://dx.doi.org/10.1038/s41598-018-20971-4] [PMID: 29416085]
[32]
MOE (Molecular Operating Environment) Version; Chemical Computing Group. 2014.http://www.chemcomp.com/MOEMolecular_Operating_ Environment.htm
[33]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[34]
Labute, P. Protonate 3D: Assignment of Macromolecular Protonation State and Geometry. Chemical Computing Group. 2007.http://www.chemcomp.com/journal/proton.htm
[35]
LeadIT version 2.3.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2017. Available at:, www.biosolveit.de/LeadIT
[36]
Schneider, N.; Lange, G.; Hindle, S.; Klein, R.; Rarey, M. A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided Mol. Des., 2013, 27(1), 15-29.
[http://dx.doi.org/10.1007/s10822-012-9626-2] [PMID: 23269578]
[37]
Accelrys Software Inc. Accelrys Software; San Diego, CA, 2013.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 07 August, 2020
Page: [689 - 702]
Pages: 14
DOI: 10.2174/1573406415666190614095821
Price: $65

Article Metrics

PDF: 22
HTML: 1