Computational Drug Repurposing: Classification of the Research Opportunities and Challenges

Author(s): Seyedeh Shaghayegh Sadeghi, Mohammad Reza Keyvanpour*

Journal Name: Current Computer-Aided Drug Design

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Drug repurposing has grown significantly in recent years. Research and innovation in drug repurposing are extremely popular due to its practical and explicit advantages. However, its adoption into practice is slow because researchers and industries have to face various challenges.

Objective: As this field, there is a lack of a comprehensive platform for systematic identification for removing development limitations. This paper deals with a comprehensive classification of challenges in drug repurposing.

Methods: Initially, a classification of various existing repurposing models is propounded. Next, the benefits of drug repurposing are summarized. Further, a categorization for computational drug repurposing shortcomings is presented. Finally, the methods are evaluated based on their strength to addressing the drawbacks.

Results: This work can offer a desirable platform for comparing the computational repurposing methods by measuring the methods in light of these challenges.

Conclusion: A proper comparison could prepare guidance for a genuine understanding of methods. Accordingly, this comprehension of the methods will help researchers eliminate the barriers thereby developing and improving methods. Furthermore, in this study, we conclude why despite all the benefits of drug repurposing, it is not being done anymore.

Keywords: Drug repurposing, data mining, machine learning, challenges, benefit, computation repurposing.

[1]
Lu, L.; Yu, H. DR2DI: a powerful computational tool for predicting novel drug-disease associations. J. Comput. Aided Mol. Des., 2018, 32(5), 633-642.
[http://dx.doi.org/10.1007/s10822-018-0117-y] [PMID: 29687309]
[2]
Yella, J.K.; Yaddanapudi, S.; Wang, Y.; Jegga, A.G. changing trends in computational drug repositioning. Pharmaceuticals (Basel), 2018, 11(2), 57.
[http://dx.doi.org/10.3390/ph11020057] [PMID: 29874824]
[3]
Mehndiratta, M.M.; Wadhai, S.A.; Tyagi, B.K.; Gulati, N.S.; Sinha, M. Drug repositioning. Int. J. Epilepsy, 2016, 3(2), 91-94.
[http://dx.doi.org/10.1016/j.ijep.2016.09.002]
[4]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[5]
Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W., Jr; Tong, W. In silico drug repositioning: what we need to know. Drug Discov. Today, 2013, 18(3-4), 110-115.
[http://dx.doi.org/10.1016/j.drudis.2012.08.005] [PMID: 22935104]
[6]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[7]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[8]
Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational drug repositioning. Brief. Bioinform., 2016, 17(1), 2-12.
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[9]
Alaimo, S.; Giugno, R.; Pulvirenti, A. recommendation techniques for drug-target interaction prediction and drug repositioning. Methods Mol. Biol., 2016, 1415, 441-462.
[http://dx.doi.org/10.1007/978-1-4939-3572-7_23] [PMID: 27115647]
[10]
Vanhaelen, Q.; Mamoshina, P.; Aliper, A.M.; Artemov, A.; Lezhnina, K.; Ozerov, I.; Labat, I.; Zhavoronkov, A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov. Today, 2017, 22(2), 210-222.
[http://dx.doi.org/10.1016/j.drudis.2016.09.019] [PMID: 27693712]
[11]
March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. on the integration of in silico drug design methods for drug repurposing. Front. Pharmacol., 2017, 8(MAY), 298.
[http://dx.doi.org/10.3389/fphar.2017.00298] [PMID: 28588497]
[12]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[13]
Napolitano, F.; Zhao, Y.; Moreira, V.M.; Tagliaferri, R.; Kere, J.; D’Amato, M.; Greco, D. Drug repositioning: a machine-learning approach through data integration. J. Cheminform., 2013, 5(1), 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[14]
Team, H. Drug repurposing summary report. Adv. Treat. rare Dis, 2013, 2017, 1(9018507), 666-672.
[15]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. a review of network-based approaches to drug repositioning. Brief. Bioinform., 2017, 2016, 12.
[PMID: 28334136]
[16]
Haghani, S.; Keyvanpour, M.R. A systemic analysis of link prediction in social network. Artif. Intell. Rev., 2017, 1-35.
[17]
Ghamami, F.; Keyvanpour, M. Why biomedical relation extraction is an open issue. ICIC Int., 2018, 9(8), 747-756.
[18]
Deem, M.J.; Ramsey, G. Guilt by Association? Philos. Psychol., 2000, 29(4), 570-585.
[http://dx.doi.org/10.1080/09515089.2015.1126706]
[19]
Keyvanpour, M.; Azizani, F. Classification of Approaches and Challenges of Frequent Subgraphs Mining in Biological Network. Int. J. Adv. Eng. Sci. Technol., 2012, 4, 14-17.
[20]
Zhang, W.; Yue, X.; Lin, W.; Wu, W.; Liu, R.; Huang, F.; Liu, F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics, 2018, 19(1), 233.
[http://dx.doi.org/10.1186/s12859-018-2220-4] [PMID: 29914348]
[21]
Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755), 788-791.
[http://dx.doi.org/10.1038/44565] [PMID: 10548103]
[22]
Gligorijević, V.; Pržulj, N. Methods for biological data integration: perspectives and challenges. J. R. Soc. Interface, 2015, 12(112) 20150571
[http://dx.doi.org/10.1098/rsif.2015.0571] [PMID: 26490630]
[23]
Alshahrani, M.; Hoehndorf, R. Drug repurposing through joint learning on knowledge graphs and literature. bioRxiv, 2018. 385617
[24]
Kato, S.; Moulder, S.L.; Ueno, N.T.; Wheler, J.J.; Meric-Bernstam, F.; Kurzrock, R.; Janku, F. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience, 2015, 2(6), 576-580.
[http://dx.doi.org/10.18632/oncoscience.173] [PMID: 26244164]
[25]
Li, Y.Y.; Jones, S.J.; Lawrence, S.; Ashburn, T.; Thor, K.; Kola, I.; Landis, J.; Munos, B.; Paul, S.; Mytelka, D. Drug re-positioning for personalized medicine. Genome Med., 2012, 4(3), 1073.
[26]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[27]
Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front. Oncol., 2017, 7(November), 273.
[http://dx.doi.org/10.3389/fonc.2017.00273] [PMID: 29184849]
[28]
Delavan, B.; Roberts, R.; Huang, R.; Bao, W.; Tong, W.; Liu, Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today, 2018, 23(2), 382-394.
[http://dx.doi.org/10.1016/j.drudis.2017.10.009] [PMID: 29055182]
[29]
Sardana, D.; Zhu, C.; Zhang, M.; Gudivada, R.C.; Yang, L.; Jegga, A.G. Drug repositioning for orphan diseases. Brief. Bioinform., 2011, 12(4), 346-356.
[http://dx.doi.org/10.1093/bib/bbr021] [PMID: 21504985]
[30]
Muthyala, R. Orphan/rare drug discovery through drug re-positioning. Drug Discov. Today Ther. Strateg., 2012, 8(3-4), 71-76.
[31]
Samson, M.; Porter, N.; Orekoya, O.; Hebert, J.R.; Adams, S.A.; Bennett, C.L.; Steck, S.E. Repurposing non-antimicrobial drugs and clinical molecules to treat bacterial infections. Curr. Pharm. Des., 2017, 155(1), 3-12.
[32]
Balasundaram, P.; Veerappapillai, S.; Krishnamurthy, S.; Karuppasamy, R. Drug repurposing: an approach to tackle drug resistance in S. typhimurium. J. Cell. Biochem., 2018, 119(3), 2818-2831.
[http://dx.doi.org/10.1002/jcb.26457] [PMID: 29058787]
[33]
Maitra, A.; Bates, S.; Kolvekar, T.; Devarajan, P.V.; Guzman, J.D.; Bhakta, S. Repurposing-a ray of hope in tackling extensively drug resistance in tuberculosis. Int. J. Infect. Dis., 2015, 32, 50-55.
[http://dx.doi.org/10.1016/j.ijid.2014.12.031] [PMID: 25809756]
[34]
Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Ko-ytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E. Drug repurposing from the perspective of pharmaceutical compa-nies. Br. J. Pharmacol., 2017.
[PMID: 28369768]
[35]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017. 4170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[36]
Wu, H.; Huang, J.; Zhong, Y.; Huang, Q. DrugSig : A Resource for Computational Drug Repositioning Utilizing Gene Expression Signatures, 2017, 1-11.
[37]
Raza, K. Application of Data Mining in Bioinformatics. Indian J. Comput. Sci. Eng., 2012, 1(2), 114-118.
[38]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[39]
Doubal, F.N.; Ali, M.; Batty, G.D.; Charidimou, A.; Eriksdotter, M.; Hofmann-Apitius, M.; Kim, Y.H.; Levine, D.A.; Mead, G.; Mucke, H.A.M.; Ritchie, C.W.; Roberts, C.J.; Russ, T.C.; Stewart, R.; Whiteley, W.; Quinn, T.J. Big data and data repurposing - using existing data to answer new questions in vascular dementia research. BMC Neurol., 2017, 17(1), 72.
[http://dx.doi.org/10.1186/s12883-017-0841-2] [PMID: 28412946]
[40]
Sloutsky, R.; Jimenez, N.; Swamidass, S.J.; Naegle, K.M. Accounting for noise when clustering biological data. Brief. Bioinform., 2013, 14(4), 423-436.
[http://dx.doi.org/10.1093/bib/bbs057] [PMID: 23063929]
[41]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[42]
Ezzat, A.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinformatics, 2016, 17(Suppl. 19), 509.
[http://dx.doi.org/10.1186/s12859-016-1377-y] [PMID: 28155697]
[43]
Mikel Galar, E. A review on ensemlbes for the class imbalance problem: bagging, boosting and hybrid-based approaches.IEEE Trans. In:. Syst. Man., Cybern. - Part C Appl. Rev; , 2011, pp. 1-22.
[44]
Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning. Brief. Bioinform., 2016, (August), 1-4.
[PMID: 27881429]
[45]
Pyysalo, S.; Sætre, R.; Tsujii, J.; Salakoski, T. Why biomedical relation extraction results are incomparable and what to do about it. Proc. Third Int. Symp. Semant. Min. Biomed. (SMBM 2008), Turku2008, pp. 149-152.
[46]
Mei, J.P.; Kwoh, C.K.; Yang, P.; Li, X.L.; Zheng, J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 2013, 29(2), 238-245.
[http://dx.doi.org/10.1093/bioinformatics/bts670] [PMID: 23162055]
[47]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S. R.; Varshosaz, J.; Green, J. R. Heter-LP: A heterogeneous label propagation algorithm and its application in drug repositioning., 2017, 68
[48]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[49]
Khaksari, A.; Keyvanpour, M.T.P-T.A. A comparative ana-lytical framework for trust prediction models in online social networks based on trust aspects. Artif. Intell. Rev., 2017.
[50]
Nguyen, C.H.; Mamitsuka, H. Latent feature kernels for link prediction on sparse graphs. IEEE Trans. Neural Netw. Learn. Syst., 2012, 23(11), 1793-1804.
[http://dx.doi.org/10.1109/TNNLS.2012.2215337] [PMID: 24808073]
[51]
Oprea, T.I.; Bauman, J.E.; Bologa, C.G.; Buranda, T.; Chigaev, A.; Edwards, B.S.; Jarvik, J.W.; Gresham, H.D.; Haynes, M.K.; Hjelle, B.; Hromas, R.; Hudson, L.; Mackenzie, D.A.; Muller, C.Y.; Reed, J.C.; Simons, P.C.; Smagley, Y.; Strouse, J.; Surviladze, Z.; Thompson, T.; Ursu, O.; Waller, A.; Wandinger-Ness, A.; Winter, S.S.; Wu, Y.; Young, S.M.; Larson, R.S.; Willman, C.; Sklar, L.A. Drug repurposing from an academic perspective. Drug Discov. Today Ther. Strateg., 2011, 8(3-4), 61-69.
[http://dx.doi.org/10.1016/j.ddstr.2011.10.002] [PMID: 22368688]
[52]
Kim, T.W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 132-142.
[http://dx.doi.org/10.1007/s13311-014-0325-7] [PMID: 25549849]
[53]
Chen, B.; Li, F.; Chen, S.; Hu, R.; Chen, L. Link prediction based on non-negative matrix factorization. PLoS One, 2017, 12(8) e0182968
[http://dx.doi.org/10.1371/journal.pone.0182968] [PMID: 28854195]
[54]
Žitnik, M.; Zupan, B. Data fusion by matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37(1), 41-53.
[http://dx.doi.org/10.1109/TPAMI.2014.2343973] [PMID: 26353207]
[55]
Daly, R.; Shen, Q.; Aitken, S. Learning bayesian networks: approaches and issues. Knowl. Eng. Rev., 2011, 26(2), 99-157.
[http://dx.doi.org/10.1017/S0269888910000251]
[56]
Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE, 2015, 104(1), 1-23.
[57]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Ni, P.; Zhao, K.; Wu, F.; Pan, Y. Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2018, 5963(c), 1-1.
[http://dx.doi.org/10.1109/TCBB.2018.2883041] [PMID: 29994051]
[58]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics, 2016, 32(17), 2664-2671.
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[59]
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[60]
Chen, H.; Zhang, H.; Zhang, Z.; Cao, Y.; Tang, W. Network-based inference methods for drug repositioning. Comput. Math. Methods Med., 2015, 2015(5) 130620
[PMID: 25969690]
[61]
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol., 2012, 8(5) e1002503
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[62]
Feng, W.; Huang, W.; Ren, J. Class imbalance ensemble learning based on the margin theory. Appl. Sci. (Basel), 2018, 8(5), 815.
[http://dx.doi.org/10.3390/app8050815]
[63]
Sun, Y.; Kamel, M.S.; Wong, A.K.C.; Wang, Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit., 2007, 40(12), 3358-3378.
[http://dx.doi.org/10.1016/j.patcog.2007.04.009]
[64]
Santiso, S.; Casillas, A.; Pérez, A. The class imbalance problem detecting adverse drug reactions in electronic health records. Health Informatics J., 2018, 1(11) 1460458218799470
[PMID: 30230408]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 02 September, 2020
Page: [354 - 364]
Pages: 11
DOI: 10.2174/1573409915666190613113822
Price: $65

Article Metrics

PDF: 33
HTML: 1