Endophytic Fungal Diversity and their Interaction with Plants for Agriculture Sustainability Under Stressful Condition

Author(s): Muhammad Ikram*, Niaz Ali, Gul Jan, Farzana G. Jan, Naeem Khan

Journal Name: Recent Patents on Food, Nutrition & Agriculture

Volume 11 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Endophytic fungi are an interesting group of organisms that colonize the healthy internal tissues of living plants, and do not cause any symptoms of disease in the host plants. Several decades of study and research have rustled the co-existing endophytes with their host plants, which can significantly influence the formation of metabolic products in plants, as they have the ability to produce a new interesting bioactive compound, which is of pharmaceutical, industrial and agricultural importance. Empirical evidences have indicated that endophytic fungi can confer profound impacts on plant communities by enhancing their growth, increasing their fitness, strengthening their tolerance to abiotic and biotic stresses, enhancing the defense mechanism and promoting the accumulation of secondary metabolites that provide immunity against pathogens. Many of these compounds are novel products and could be granted patents. Further, there are growing interests of multinational companies using these patents prepared in special formula to sell in international markets. This review addresses biodiversity and biological roles of endophytic fungi in association with their host plants through reviewing published research data obtained from the last 30 years and highlights their importance for plants, industry as well as ecosystem.

Keywords: Biodiversity, symbiosis, abiotic stresses, pathogenic defense, bioactive compounds, endophytic fungi.

[1]
Carroll GC. The biology of endophytism in plants with particular reference to woody plants. In:Fokkema N.J, van den Heuvel J, editors. . Microbiology of the phyllosphere. Cambridge, UK: Cambridge University Press 1986; pp. 205-22.
[2]
Azevedo JL, Júnior WM, Pereira JO, Araújo WL. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 2000; 3: 40-65.
[http://dx.doi.org/10.2225/vol3-issue1-fulltext-4]
[3]
Krings M, Taylor TN, Hass H, et al. Fungal endophytes in a 400- million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 2007; 174: 648-57.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02008.x] [PMID: 17447919]
[4]
Khan N, Zandi P, Ali S, Mehmood A, Shahid MA. Impact of Salicylic acid and PGPR on the Drought Tolerance and Phytoremediation potential of Helianthus annus. Front Microbiol 2018; 9.
[5]
Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Sci 2000; 289(5486): 1920-1.
[http://dx.doi.org/10.1126/science.289.5486.1920] [PMID: 10988069]
[6]
Arnold E, Maynard Z, Gilbert GS, Coley PD, Kursar TA. Are tropical fungal endophytes hyperdiverse? Ecol Lett 2000; 3: 267-74.
[http://dx.doi.org/10.1046/j.1461-0248.2000.00159.x]
[7]
Khan N, Bano A, Zandi P. Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J Plant Interact 2018; 13(1): 239-47.
[http://dx.doi.org/10.1080/17429145.2018.1471527]
[8]
Stanley SJ. Observations on the seasonal occurrence of marine endophytic andparasitic fungi. Can J Bot 1992; 70: 2089-96.
[http://dx.doi.org/10.1139/b92-259]
[9]
Raviraja NS, Sridhar KR, Barlocher F. Endophytic aquatic hyphomycetes of roots ofplantation crops and ferms from India. Sydowia 1996; 48: 152-60.
[10]
Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 2018; 1-14.
[http://dx.doi.org/10.1002/jobm.201800309] [PMID: 30183106]
[11]
Malinowski DP, Belesky DP. Ecological importance of Neotyphodium sp. Grass endophytes in agroecosystems. Grassl Sci 2006; 52(1): 23-8.
[http://dx.doi.org/10.1111/j.1744-697X.2006.00041.x]
[12]
Shiomi HF, Silva HSA, Melo ISD, Nunes FV, Bettiol W. Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Sci Agric 2006; 63(1): 32-9.
[http://dx.doi.org/10.1590/S0103-90162006000100006]
[13]
Strobel GA, Stierle A, Stierle D, Hess WM. Taxomces andreanaea proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 1993; 47: 71-8.
[14]
Frattarelli DA, Reed MD, Giacoia GP, Aranda JV. Antifungals in systemic neonatal candidiasis. Drugs 2004; 64(9): 949-68.
[http://dx.doi.org/10.2165/00003495-200464090-00003] [PMID: 15101785]
[15]
Pamphile JA, Azevedo JL. Molecular characterization of endophytic strains of Fusarium verticillioides (Fusarium moniliforme) from maize (Zea mays. L.). World J Microbiol Biotechnol 2002; 18(5): 391-6.
[http://dx.doi.org/10.1023/A:1015507008786]
[16]
Parfrey LW, Lahr DJ, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci 2011; 108(33): 13624-9.
[http://dx.doi.org/10.1073/pnas.1110633108] [PMID: 21810989]
[17]
Jasinski JP, Payette S. Holocene occurrence of Lophodermium piceae, a black spruce needle endophyte and possible paleoindicator of boreal forest health. Quat Res 2007; 67(1): 50-6.
[http://dx.doi.org/10.1016/j.yqres.2006.07.008]
[18]
Stone JK, Polishook J, White JR. Endophytic fungi: Biodiversity of Fungi. Inv Mon Meth 2004; pp. 241-70.
[19]
Bischoff JF, White JF. Evolutionary development of the Clavicipitaceae. Mycol Series 2005; (23): 505 .
[20]
Saikkonen K, Ion D, Gyllenberg M. The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc Lond B: Biol Sci 2002; 269(1498): 1397-403.
[http://dx.doi.org/10.1098/rspb.2002.2006] [PMID: 12079664]
[21]
Davis EC, Franklin JB, Shaw AJ, Vilgalys R. Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. Am J Bot 2003; 90(11): 1661-7.
[http://dx.doi.org/10.3732/ajb.90.11.1661] [PMID: 21653342]
[22]
Khan N, Bano A, Babar MA. Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L. PLoS One 2019; 14(3):e0213040
[http://dx.doi.org/10.1371/journal.pone.0213040] [PMID: 30830939]
[23]
Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 2019; 9(1): 2097.
[http://dx.doi.org/10.1038/s41598-019-38702-8] [PMID: 30765803]
[24]
Alloush GA. Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 2004; 267: 1-12.
[http://dx.doi.org/10.1007/s11104-005-2575-y]
[25]
Tintjer T, Rudgers JA. Grass herbivore interaction altered by strains of a native endophyte. New Phytol 2006; 170(3): 513-21.
[http://dx.doi.org/10.1111/j.1469-8137.2006.01720.x] [PMID: 16626473]
[26]
Khan SA, Hamayun M, Yoon H, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol 2008; 8(1): 231.
[http://dx.doi.org/10.1186/1471-2180-8-231] [PMID: 19099608]
[27]
Asgher M, Khan MIR, Anjum NA, Khan NA. Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 2015; 252: 399-413.
[http://dx.doi.org/10.1007/s00709-014-0710-4] [PMID: 25303855]
[28]
Ljung K. Auxin metabolism and homeostasis during plant development. Development 2013; 140: 943-50.
[http://dx.doi.org/10.1242/dev.086363] [PMID: 23404103]
[29]
Kazan K. Auxin and the integration of environmental signals into plant root development. Ann Bot 2013; 112: 1655-65.
[http://dx.doi.org/10.1093/aob/mct229] [PMID: 24136877]
[30]
Khan N, Bano A, Babar MA. The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Arch Microbiol 2019; 201(6): 769-85.
[http://dx.doi.org/10.1007/s00203-019-01644-w]
[31]
Jung J, Park C. Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 2011; 6: 1198-200.
[http://dx.doi.org/10.4161/psb.6.8.15792] [PMID: 21757997]
[32]
Olszewski N, Sun TP, Gubler F. Gibberellin signaling, biosynthesis, catabolism, and response pathways. Plant Cell 2012; 14: 561-80.
[http://dx.doi.org/10.1105/tpc.010476] [PMID: 12045270]
[33]
Ahmad P. Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 2010; 56: 575-88.
[http://dx.doi.org/10.1080/03650340903164231]
[34]
Tuna AL, Kaya C, Dikilitas M, Higgs D. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 2008; 63: 1-9.
[http://dx.doi.org/10.1016/j.envexpbot.2007.06.007]
[35]
Manjili FA, Sedghi M, Pessarakli M. Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr 2012; 35: 1098-1.
[http://dx.doi.org/10.1080/01904167.2012.671411]
[36]
Wolbang CM, Chandler PM, Smith JJ, Ross JJ. Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 2004; 134: 769-76.
[http://dx.doi.org/10.1104/pp.103.030460] [PMID: 14730077]
[37]
Khan MA, Gul B, Weber DJ. Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 2004; 82: 37-42.
[http://dx.doi.org/10.1139/b03-140]
[38]
Wilkinson S, Davies WJ. ABA-based chemical signalling: the coordination of responses to stress in plants. Plant Cell Environ 2002; 25: 195-210.
[http://dx.doi.org/10.1046/j.0016-8025.2001.00824.x] [PMID: 11841663]
[39]
Khan N, Bano A, Babar MA. The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 2017; 72(3): 195-205.
[http://dx.doi.org/10.1007/s13199-016-0457-0]
[40]
Gomez CA, Arbona V, Jacas J. PrimoMillo E, Talon M. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul 2002; 21: 234-40.
[http://dx.doi.org/10.1007/s00344-002-0013-4]
[41]
Nayyar H, Bains TS, Kumar S. Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot 2005; 54: 275-85.
[http://dx.doi.org/10.1016/j.envexpbot.2004.09.007]
[42]
Bano A, Ullah F, Nosheen A. Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 2012; 58: 181-5.
[http://dx.doi.org/10.17221/210/2011-PSE]
[43]
Li X, Cai J, Liu F, Dai T, Cao W, Jiang D. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring’s seedlings. J Agric Crop Sci 2014; 200: 467-78.
[http://dx.doi.org/10.1111/jac.12064]
[44]
Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA. UPLC‐HRMS‐based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long‐term drought stress. Plant Cell Environ 2018; 42(1)
[45]
Asgari HR, Cornelis W, Van Damme P. Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations. Int J Plant Prod 2012; 6(2): 195-208.
[46]
Akbari GA, Arab SM, Alikhani HA, Allakdadi I, Arzanesh MH. Isolation andselection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 2007; 3(4): 523-9.
[47]
Khan N, Bano A, Shahid MA, Nasim W, Babar MA. Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biologia 2018; 1-6.
[48]
Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009; 321(1-2): 305-39.
[http://dx.doi.org/10.1007/s11104-009-9895-2]
[49]
Chandanie WA, Kubota M, Hyakumachi M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 2006; 286(1-2): 209-17.
[http://dx.doi.org/10.1007/s11104-006-9038-y]
[50]
Kane KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 2011; 71(3): 337-44.
[51]
Khan AL, Shinwari ZK, Kim Y, Waqas M, et al. Role of endophyte Chaetomium globosum lk4 in growth of Capsicum annuum by production of gibberellins and indole acetic acid. Pak J Bot 2012; 44: 1601-7.
[52]
Redman RS, Kim YO, Woodward CJDA, et al. Increased fitness and adaptation of rice plants to cold, drought and salt stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 2011; 6:E14823
[http://dx.doi.org/10.1371/journal.pone.0014823] [PMID: 21750695]
[53]
Waqas M, Khan AL, Kamran M, et al. Endophytic fungi produce gibberellins and indole acetic acid and promotes host-plant growth during stress. Molecules 2012; 17: 10754-73.
[http://dx.doi.org/10.3390/molecules170910754] [PMID: 22960869]
[54]
Cheplick GP. Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 2006; 60: 202-10.
[http://dx.doi.org/10.1016/j.envexpbot.2006.10.001]
[55]
Zaurov DE, Bonos S, Murphy JA, et al. Endophyte infection can contribute to aluminium tolerance in fine fescues. Crop Sci 2001; 41: 1981-4.
[http://dx.doi.org/10.2135/cropsci2001.1981]
[56]
Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater a case study. Agric Ecosyst Environ 2005; 109(3-4): 310-22.
[http://dx.doi.org/10.1016/j.agee.2005.02.025]
[57]
Thounaojam TC, Panda P, Mazumdar P. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Phy Bioch 2012; 53: 33-9.
[58]
Ikram M, Ali N, Jan G, et al. IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One 13:e0208150
[http://dx.doi.org/10.1371/journal.pone.0208150] [PMID: 30496253]
[59]
Mesa J, Mateos-Naranjo E, Caviedes MM, Redondo-Gómez M. PajueloE, Rodríguez- Llorente ID. . Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Fron Microb 2015; (6): 1450.
[60]
Khan SA, Hamayun M, Kim HY, et al. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellins production. Biotechnol Lett 2009; 31: 283-7.
[http://dx.doi.org/10.1007/s10529-008-9862-7] [PMID: 18931975]
[61]
Thomson BC, Tisserant E, Plassart P, et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Bio Bioch 2015; 88: 403-13.
[http://dx.doi.org/10.1016/j.soilbio.2015.06.012]
[62]
Hannula SE, Morriën E, de Hollander M, et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J 2017; 11(10): 2294.
[http://dx.doi.org/10.1038/ismej.2017.90] [PMID: 28585935]
[63]
Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 2011; 159(12): 3730-8.
[http://dx.doi.org/10.1016/j.envpol.2011.07.008] [PMID: 21835516]
[64]
Andrades-Moreno L, Del Castillo I, Parra R, et al. Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res Int 2014; 21(5): 3713-21.
[http://dx.doi.org/10.1007/s11356-013-2364-8] [PMID: 24281681]
[65]
Mesa J, Mateos-Naranjo E, Caviedes E, Redondo-Gómez S, Pajuelo E. Rodríguez- Llorente ID. Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Mar Pollut Bull 2015; 90(1-2): 150-9.
[http://dx.doi.org/10.1016/j.marpolbul.2014.11.002] [PMID: 25467875]
[66]
Deng Z, Cao L. Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 2017; (168): 1100-6.
[http://dx.doi.org/10.1016/j.chemosphere.2016.10.097] [PMID: 28029384]
[67]
Lebeau T, Braud A, Jézéquel K. Performance of bioaugmentation-assisted phyto- extraction applied to metal contaminated soils: a review. Environ Pollut 2008; 153(3): 497-522.
[http://dx.doi.org/10.1016/j.envpol.2007.09.015] [PMID: 17981382]
[68]
Balal RM, Shahid MA, Javaid MM, et al. Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiol Plant 2017; 39(1): 31.
[http://dx.doi.org/10.1007/s11738-016-2335-z]
[69]
Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012; 19(7): 792-8.
[http://dx.doi.org/10.1016/j.chembiol.2012.06.004] [PMID: 22840767]
[70]
Kusari S, Lamshöft M, Spiteller M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann asanovel source of the anticancer pro-drug deoxypodophyllo toxin. J Appl Microbiol 2009; 107: 1019-30.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04285.x] [PMID: 19486398]
[71]
Yu H, Zhang L, Li L, et al. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Micro Res 165(6): 437-9.
[72]
Teiten MH, Mack F, Debbab A, et al. Anticancer effect of altersolanol A, a metabolite produced by the endophytic fungus Stemphylium globuliferum, mediated by its pro-apoptotic and antiinvasive potential via the inhibition of NF-κB activity. Bio Med Chem 21(13): 3850-8.
[73]
Mapperson RR, Kotiw M, Davis RA, Dearnaley JD. The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Curr Microbiol 2014; 68(1): 30-7.
[http://dx.doi.org/10.1007/s00284-013-0415-5] [PMID: 23975673]
[74]
Khan N, Bano A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediation 2016; 18(12): 1258-69. b
[http://dx.doi.org/10.1080/15226514.2016.1203287] [PMID: 27348506]
[75]
Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phyt Rev 2012; (3): 231-35.
[76]
Wang JW, Zheng LP, Xiang TR. The Preparation of an elicitor from a fungal endophyte to enhance Artemisin in production in hairy root cultures of Artemisia annua L. Chin J Bio 2006; 22: 829-34.
[PMID: 17037210]
[77]
Schulz B, Boyle C. The endophytic continuum. Mycol Res 2005; 109: 661-86.
[http://dx.doi.org/10.1017/S095375620500273X] [PMID: 16080390]
[78]
Strobel GA. Rainforest endophytes and bioactive products. Crit Rev Biotechnol 2002; 22: 315-33.
[http://dx.doi.org/10.1080/07388550290789531] [PMID: 12487423]
[79]
Liu CH, Zou WX, Lu H, Tan RX. Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 2001; 88: 277-82.
[http://dx.doi.org/10.1016/S0168-1656(01)00285-1] [PMID: 11434973]
[80]
Park JH, Choi GJ, Lee HB, et al. Griseofulvin from Xylaria sp. strain F0010, and endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 2005; 15: 112-7.
[81]
Kim HY, Choi GJ, Lee HB, et al. Some fungal endophytes from vegetable crops and their anti- oomycete activities against tomato late blight. Lett Appl Microbiol 2007; 44: 332-7.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02093.x] [PMID: 17309513]
[82]
Dingle J, Mcgee PA. Some endophytic fungi reduce the density of pustules of Puccinia recondita f.sp. caused by Pyrenophora tritici-repentis. Australas Plant Pathol 2003; 35: 411-8.
[83]
Istifadah N, Mcgee PA. Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Australas Plant Pathol 2006; 35: 411-8.
[http://dx.doi.org/10.1071/AP06038]
[84]
Waller F, Achatz B, Baltruscha TH, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci 2005; 102: 13386-91.
[http://dx.doi.org/10.1073/pnas.0504423102] [PMID: 16174735]
[85]
Sánchez Márquez S, Bills GF, Zabalgogeazcoa I. The endophytic mycobiota of the grass Dactylis glomerata. Fungal Divers 2007; 27: 171-95.
[86]
Rivera Varas VV, Freeman TA, Gusmestad NC, Secor GA. Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology 2007; 97: 1331-7.
[http://dx.doi.org/10.1094/PHYTO-97-10-1331] [PMID: 18943692]
[87]
Clarke BB, White JF, Hurley H, Torres MS, Sun S, Huff DR. Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90: 994-8.
[http://dx.doi.org/10.1094/PD-90-0994] [PMID: 30781289]
[88]
Brilman LA. Endophytes in turfgrass cultivars. In: Neotyphodium in cool season grasses (Roberts CA, (eds) Plant pathology concepts and laboratory exercises, . 2nd Ed. CRC Press, New York . 2005; pp. 423-36.
[http://dx.doi.org//10.1002/9780470384916.ch16]
[89]
Stierle A, Strobel G, Stierle D. Taxolandtaxaneproduction by Taxomycesandreanae, an endophytic fungus of Pacific yew. Science 1993; 260: 214-6.
[http://dx.doi.org/10.1126/science.8097061] [PMID: 8097061]
[90]
Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllo toxin. J Nat Prod 2006; 69: 1121-4.
[http://dx.doi.org/10.1021/np060174f] [PMID: 16933860]
[91]
Puri SC, Nazir A, Chawla R, et al. The endophytic fungus Trametes hirsuta asanovel alternative source of podophyllo toxin and related aryltetr alinlignans. J Biotechnol 2006; 122: 494-510.
[http://dx.doi.org/10.1016/j.jbiotec.2005.10.015] [PMID: 16375985]
[92]
Khan N, Ali S, Shahid MA, Kharabian-Masouleh A. Advances in detection of stress tolerance in plants through metabolomics approaches. Plant Omics 2017; 10(3): 153.
[http://dx.doi.org/10.21475/poj.10.03.17.pne600]
[93]
Shweta S, Zuehlke S, Ramesha BT, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. Ex Arn (Lcacinaceae) producec amptothecin, 10-hydroxy camptothecin and 9-methoxy camptothecin. Phytochemistry 2010; 71: 117-22.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.030] [PMID: 19863979]
[94]
Kusari S, Lamshöft M, Zühlke S, Spiteller M. An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 2008; 71: 159-62.
[http://dx.doi.org/10.1021/np070669k] [PMID: 18220354]
[95]
Kusari S, Verma VC, Lamshoeft M, Spiteller M. An endophytic fungus from Azadirachta indica A. Juss. That produces azadirachtin. World J Microbiol Biotechnol 2012; 28: 1287-94.
[http://dx.doi.org/10.1007/s11274-011-0876-2] [PMID: 22805849]
[96]
Bashyal B. Seimato antleriumnepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 1999; 72: 33-42.
[97]
Ownley BH, Windham MT. Biological control of plant pathogens. In:Trigiano RN, Windham MT, Windham AS (eds). Plant pathology concepts and laboratory exercises. 2nd edn. CRC Press: New York 2007; pp. 423-36.
[98]
Khan N, Bano A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremediation 2016a; 18(3): 211-21.
[http://dx.doi.org/10.1080/15226514.2015.1064352] [PMID: 26507686]
[99]
Mercier J, Jime’nez JI. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 2004; 31: 1-8.
[http://dx.doi.org/10.1016/j.postharvbio.2003.08.004]
[100]
Mercier J, Smilanick JL. Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol Control 2005; 32: 401-7.
[http://dx.doi.org/10.1016/j.biocontrol.2004.12.002]
[101]
Strobel GA. Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 2006; 33: 514-22.
[http://dx.doi.org/10.1007/s10295-006-0090-7] [PMID: 16491360]
[102]
Askari F, Sefidkon F, Mirza M. Quantitative and qualitative of essential oil Pimpinella anisum. Res Recons 1998; 38: 70-3.
[103]
Harmon GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species- opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004; 2: 43-56.
[http://dx.doi.org/10.1038/nrmicro797] [PMID: 15035008]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2020
Published on: 18 September, 2020
Page: [115 - 123]
Pages: 9
DOI: 10.2174/2212798410666190612130139

Article Metrics

PDF: 17