Diversified Thiazole Substituted Coumarins and Chromones as Non- Cytotoxic ROS and NO Inhibitors

Author(s): Uzma Salar, Khalid Mohammed Khan*, Almas Jabeen, Shafquat Hussain, Aisha Faheem, Farwa Naqvi, Shahnaz Perveen.

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, aspirin, indomethacin, flufenamic acid and phenylbutazone are used to treat most of the inflammatory disorders. These NSAIDs are also associated with serious side effects including gastric ulceration, nephrotoxicity, and bleeding, mainly due to acidic nature. Hence, there is a need to identify highly potent and safer treatment for inflammatory disorders.

Methods: Herein, synthetic hydrazinyl thiazole substituted coumarins and chromones 1-48 were evaluated for ROS inhibitory activity. ROS were generated from zymosan activated whole blood phagocytes.

Results: Among all tested compounds, compounds 1 (IC50 = 38.3 ± 7.1 μM), 2 (IC50 = 5.7 ± 0.2 μM), 5 (IC50 = 28.3 ± 3.5 μM), 23 (IC50 = 12.5 ± 3.1 μM), 27 (IC50 = 32.8 ± 1.1 μM), 39 (IC50 = 20.2 ± 1.6 μM), and 42 (IC50 = 43.2 ± 3.8 μM) showed potent ROS inhibition as compared to standard ibuprofen (IC50 = 54.3 ± 1.9 μM). Whereas, compounds 3 (IC50 = 134.7 ± 1.0 μM), 16 (IC50 = 75.4 ± 7.2 μM), 24 (IC50 = 102.4 ± 1.0 μM), and 31 (IC50 = 86.6 ± 1.5 μM) were found to be moderately active. Compounds 1, 2, 5, 23, 27, 39, and 42, having potent ROS inhibitory activity were also screened for their nitric oxide (NO) inhibition. Cytotoxicity was also checked for all active compounds on NIH-3T3 cell line. Cyclohexamide (IC50 = 0.13 ± 0.02 μM) was used as standard.

Conclusion: Identified active compounds from these libraries may serve as lead candidates for future research in order to obtain a more potent, and safer anti-inflammatory agent.

Keywords: Coumarin, chromone, thiazole, ROS, nitric oxide, cytotoxicity, antiinflammatory, ibuprofen, structure-activity relationship.

[1]
Chang-Hui, L.; Yen-Ju, H.; Yin-Chou, L. Celecoxib simulates respiratory burst through pertussis toxin-sensitive G-protein, a possible signal for β 2-integrin expression on human neutrophils. Eur. J. Pharmacol., 2004, 484(1), 29-39.
[http://dx.doi.org/10.1016/j.ejphar.2003.10.054] [PMID: 14729379]
[2]
Alvaro-Gracia, J.M. Licofelone--clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford), 2004, 43(Suppl. 1), i21-i25.
[http://dx.doi.org/10.1093/rheumatology/keh105] [PMID: 14752172]
[3]
Cuzzocrea, S. Shock, inflammation and PARP. Pharmacol. Res., 2005, 52(1), 72-82.
[http://dx.doi.org/10.1016/j.phrs.2005.02.016] [PMID: 15911335]
[4]
Narayanan, P.K.; Carter, W.O.; Ganey, P.E.; Roth, R.A.; Voytik-Harbin, S.L.; Robinson, J.P. Impairment of human neutrophil oxidative burst by polychlorinated biphenyls: Inhibition of superoxide dismutase activity. J. Leukoc. Biol., 1998, 63(2), 216-224.
[http://dx.doi.org/10.1002/jlb.63.2.216] [PMID: 9468280]
[5]
Roussin, A.; Le Cabec, V.; Lonchampt, M.; De Nadaï, J.; Canet, E.; Maridonneau-Parini, I. Neutrophil-associated inflammatory responses in rats are inhibited by phenylarsine oxide. Eur. J. Pharmacol., 1997, 322(1), 91-96.
[http://dx.doi.org/10.1016/S0014-2999(96)00988-0] [PMID: 9088876]
[6]
Liu, Q.; Suzuki, K.; Kudo, S.; Yamada, M.; Kowatari, K.; Umeda, T.; Nakaji, S.; Sugawara, K. Effect of decaglycerol monooleate on of human neutrophils: An in vitro study. Food Chem. Toxicol., 2000, 38, 423-428.
[http://dx.doi.org/10.1016/S0278-6915(00)00013-2] [PMID: 10762728]
[7]
Tan, A.S.; Berridge, M.V. Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: A simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J. Immunol. Methods, 2000, 238(1-2), 59-68.
[http://dx.doi.org/10.1016/S0022-1759(00)00156-3] [PMID: 10758236]
[8]
Khan, K.M.; Khan, M.; Ali, M.; Qadir, M.I.; Parveen, S.; Karim, A.; Choudhary, M.I. Superoxide respiratory burst inhibitory activity of Bis-Schiff bases of isatins. J. Chem. Soc. Pak., 2013, 35, 987-993.
[9]
Omar, F.; Mahfouz, N.; Rahman, M. Design, synthesis and antiinflammatory activity of some 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem., 1996, 31(10), 819-825.
[http://dx.doi.org/10.1016/0223-5234(96)83976-6] [PMID: 22026938]
[10]
Schoen, R.T.; Vender, R.J. Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage. Am. J. Med., 1989, 86(4), 449-458.
[http://dx.doi.org/10.1016/0002-9343(89)90344-6] [PMID: 2648824]
[11]
Khan, K.M.; Saify, Z.S.; Khan, M.Z. Zia-Ullah; Choudhary, I.M.; Atta-Ur-Rahman; Perveen, S.; Chohan, Z.H.; Supuran, C.T. Synthesis of coumarin derivatives with cytotoxic, antibacterial and antifungal activity. J. Enzyme Inhib. Med. Chem., 2004, 19(4), 373-379.
[http://dx.doi.org/10.1080/14756360409162453] [PMID: 15558956]
[12]
Peng, X.M.; Damu, G.L.V.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[13]
Han, S.; Zhang, F.F.; Qian, H.Y.; Chen, L.L.; Pu, J.B.; Xie, X.; Chen, J.Z. Design, syntheses, structure-activity relationships and docking studies of coumarin derivatives as novel selective ligands for the CB2 receptor. Eur. J. Med. Chem., 2015, 93, 16-32.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.054] [PMID: 25644673]
[14]
Ellis, G.P. The Chemistry of Heterocyclic Compounds; John Wiley & Sons, 1977, 31, pp. 1-10
[15]
Edwards, A.M.; Howell, J.B.L. The chromones: history, chemistry and clinical development. A tribute to the work of Dr R. E. C. Altounyan. Clin. Exp. Allergy, 2000, 30(6), 756-774.
[http://dx.doi.org/10.1046/j.1365-2222.2000.00879.x] [PMID: 10848895]
[16]
Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev., 2014, 114(9), 4960-4992.
[http://dx.doi.org/10.1021/cr400265z] [PMID: 24555663]
[17]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[18]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[19]
Vazquez-Rodriguez, S. Figueroa-Guí~nez, R.; Matos, M. J.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J. D.; Olea-Azar, C. Synthesis of coumarin-chalcone hybrids and evaluation of their antioxidant and trypanocidal properties. MedChemComm, 2013, 4, 993-1000.
[http://dx.doi.org/10.1039/c3md00025g]
[20]
Khan, K.M.; Saify, Z.S.; Hayat, S.; Khan, M.Z.; Noor, F.; Choudhary, M.I. Zia-Ullah; Perveen, S. Synthesis and antioxidant and insecticidal activities of coumarin derivatives. J. Chem. Soc. Pak., 2002, 24, 226-231.
[21]
Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem., 2013, 56(15), 6136-6145.
[http://dx.doi.org/10.1021/jm400546y] [PMID: 23859213]
[22]
Taechowisan, T.; Lu, C.; Shen, Y.; Lumyong, S. Antitumor activity of 4-arylcoumarins from endophytic Streptomyces aureofaciens CMUAc130. J. Cancer Res. Ther., 2007, 3(2), 86-91.
[http://dx.doi.org/10.4103/0973-1482.34685] [PMID: 17998729]
[23]
Keri, R.S.; Budagumpi, S.; Pai, R.K.; Balakrishna, R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem., 2014, 78, 340-374.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.047] [PMID: 24691058]
[24]
Sharma, S.K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R. An update on natural occurrence and biological activity of chromones. Curr. Med. Chem., 2011, 18(25), 3825-3852.
[http://dx.doi.org/10.2174/092986711803414359] [PMID: 21824102]
[25]
Jones, Q.R.D.; Warford, J.; Rupasinghe, H.P.V.; Robertson, G.S. Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol. Sci., 2012, 33(11), 602-610.
[http://dx.doi.org/10.1016/j.tips.2012.08.002] [PMID: 22980637]
[26]
Chen, G.; Jin, H.Z.; Li, X.F.; Zhang, Q.; Shen, Y.H.; Yan, S.K.; Zhang, W.D. A new chromone glycoside from Rhododendron spinuliferum. Arch. Pharm. Res., 2008, 31(8), 970-972.
[http://dx.doi.org/10.1007/s12272-001-1253-y] [PMID: 18787782]
[27]
Conrad, J.; Förster-Fromme, B.; Constantin, M-A.; Ondrus, V.; Mika, S.; Mert-Balci, F.; Klaiber, I.; Pfannstiel, J.; Möller, W.; Rösner, H.; Förster-Fromme, K.; Beifuss, U. Flavonoid glucuronides and a chromone from the aquatic macrophyte Stratiotes aloides. J. Nat. Prod., 2009, 72(5), 835-840.
[http://dx.doi.org/10.1021/np800769g] [PMID: 20560646]
[28]
Khan, K.M.; Ambreen, N.; Mughal, U.R.; Jalil, S.; Perveen, S.; Choudhary, M.I. 3-Formylchromones: potential antiinflammatory agents. Eur. J. Med. Chem., 2010, 45(9), 4058-4064.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.065] [PMID: 20576329]
[29]
Salar, U.; Khan, K.M.; Jabeen, A.; Faheem, A.; Fakhri, M.I.; Saad, S.M.; Perveen, S.; Taha, M.; Hameed, A. Coumarin sulfonates: As potential leads for ROS inhibition. Bioorg. Chem., 2016, 69, 37-47.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.006] [PMID: 27669119]
[30]
Salar, U.; Khan, K.M.; Jabeen, A.; Faheem, A.; Taha, M.; Ali, F.; Syed, S.; Haider, S.M.; Perveen, S. Anti-inflammatory activity of 3-thiazolyl coumarins. J. Chem. Soc. Pak., 2017, 39, 578-585.
[31]
Jabeen, A.; Mesaik, M.A.; Simjee, S.U.L.; Bano, S.; Faizi, S. Anti-TNF-α and antiarthritic effect of patuletin: A rare flavonoid from Tagetes patula. Int. Immunopharmacol., 2016, 36, 232.
[http://dx.doi.org/10.1016/j.intimp.2016.04.034] [PMID: 27177082]
[32]
El Ashry, S.H.; El Tamany, S.H. Abd El Fattah, Mel.D.; Aly, M.R.; Boraei, A.T.; Mesaik, M.A.; Abdalla, O.M.; Fatima, B.; Jabeen, A.; Shukrulla, A.; Soomro, S. Immunomodulatory properties of S- and N-alkylated 5-(1H-indol-2-yl)-1,3,4-oxadiazole-2(3H)-thione. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 105-112.
[http://dx.doi.org/10.3109/14756366.2011.636361] [PMID: 22145639]
[33]
Salar, U.; Khan, K.M.; Chigurupati, S.; Syed, S.; Vijayabalan, S.; Wadood, A.; Riaz, M.; Ghufran, M.; Perveen, S. New hybrid scaffolds based on hydrazinyl thiazole substituted coumarin; as novel leads of dual potential; in vitro α-amylase inhibitory and antioxidant (DPPH and ABTS radical scavenging) activities. Med. Chem., 2019, 15(1), 87-101.
[http://dx.doi.org/10.2174/1573406414666180903162243] [PMID: 30179139]
[34]
Salar, U.; Khan, K.M.; Chigurupati, S.; Taha, M.; Wadood, A.; Vijayabalan, S.; Ghufran, M.; Perveen, S. New hybrid hydrazinyl thiazole substituted chromones: As potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci. Rep., 2017, 7(1), 16980.
[http://dx.doi.org/10.1038/s41598-017-17261-w] [PMID: 29209017]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2020
Page: [547 - 555]
Pages: 9
DOI: 10.2174/1570180816666190611155218
Price: $65

Article Metrics

PDF: 16
HTML: 1