PPAR Ligands Containing Stilbene Scaffold

Author(s): Marialuigia Fantacuzzi, Barbara De Filippis*, Rosa Amoroso, Letizia Giampietro

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 19 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors which belong to the ligand-activated nuclear receptor superfamily. They are ubiquitously expressed throughout the body. So far, three major subtypes have been identified, PPARα, PPARβ/δ and PPARγ. They are crucial for lipid and glucose metabolism and are also involved in the regulation of several types of tumors, inflammation, cardiovascular diseases and infertility. The importance of these transcription factors in physiology and pathophysiology has been largely investigated.

Synthetic PPAR ligands are widely used in the treatment of dyslipidemia (e.g. fibrates - PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones - PPARγ agonists) while a new generation of dual agonists reveals hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action. Many natural ligands, including polyphenolic compounds, influence the expression of these receptors. They have several health-promoting properties, including antioxidant, anti-inflammatory, and antineoplastic activities. Resveratrol, a stilbene polyphenol, is a biological active modulator of several signaling proteins, including PPARs. Given the enormous pharmacological potential of resveratrol, stilbene-based medicinal chemistry had a rapid increase covering various areas of research.

The present review discusses ligands of PPARs that contain stilbene scaffold and summarises the different types of compounds on the basis of chemical structure.

Keywords: PPAR, stilbene, resveratrol, hybrid, fibrates, thiazolidindiones.

[1]
Derosa, G.; Sahebkar, A.; Maffioli, P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J. Cell. Physiol., 2018, 233(1), 153-161.
[http://dx.doi.org/10.1002/jcp.25804] [PMID: 28098353]
[2]
Mansour, M. The roles of peroxisome proliferator-activated receptors in the metabolic syndrome. Prog. Mol. Biol. Transl. Sci., 2014, 121, 217-266.
[http://dx.doi.org/10.1016/B978-0-12-800101-1.00007-7] [PMID: 24373239]
[3]
Viswakarma, N.; Jia, Y.; Bai, L.; Vluggens, A.; Borensztajn, J.; Xu, J.; Reddy, J.K. Coactivators in PPAR-regulated gene expression. PPAR Res., 2010, 2010, 1-22.
[http://dx.doi.org/10.1155/2010/250126] [PMID: 20814439]
[4]
Kota, B.P.; Huang, T.H.; Roufogalis, B.D. An overview on biological mechanisms of PPARs. Pharmacol. Res., 2005, 51(2), 85-94.
[http://dx.doi.org/10.1016/j.phrs.2004.07.012] [PMID: 15629253]
[5]
Maccallini, C.; Mollica, A.; Amoroso, R. The positive regulation of eNOS signalling by PPAR agonists in cardiovascular diseases. Am. J. Cardiovasc. Drugs, 2017, 17(4), 273-281.
[http://dx.doi.org/10.1007/s40256-017-0220-9] [PMID: 28315197]
[6]
Feng, X.; Gao, X.; Jia, Y.; Zhang, H.; Pan, Q.; Yao, Z.; Yang, N.; Liu, J.; Xu, Y.; Wang, G.; Yang, X. Gao, X.; Jia, Y.; Zhang, H.; Pan, Q.; Yao, Z.; Yang, N.; Liu, J.; Xu, Y.; Wang, G.; Yang, X. PPAR-α agonist Fenofibrate decreased serum irisin levels in type 2 diabetes patients with hypertriglyceridemia. PPAR Res., 2015, 2015924131
[http://dx.doi.org/10.1155/2015/924131] [PMID: 26693220]
[7]
Bortolini, M.; Wright, M.B.; Bopst, M.; Balas, B. Examining the safety of PPAR agonists-current trends and future prospects. Expert Opin. Drug Saf., 2013, 12(1), 65-79.
[http://dx.doi.org/10.1517/14740338.2013.741585] [PMID: 23134541]
[8]
Simpson-Haidaris, P.J.; Pollock, S.J.; Ramon, S.; Guo, N.; Woeller, C.F.; Feldon, S.E.; Phipps, R.P. Anticancer role of PPARγ agonists in hematological malignancies found in the vasculature, marrow, and Eyes. PPAR Res., 2010, 6(1), 1-36.
[http://dx.doi.org/10.1155/2010/814609] [PMID: 20204067]
[9]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem., 2018, 77(1), 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[10]
Ammazzalorso, A.; Maccallini, C.; Amoia, P.; Amoroso, R. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur. J. Med. Chem., 2019, 173(1), 261-273.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.030] [PMID: 31009912]
[11]
Grimaldi, P.A. Regulatory functions of PPARbeta in metabolism: implications for the treatment of metabolic syndrome. Biochim. Biophys. Acta, 2007, 1771(8), 983-990.
[http://dx.doi.org/10.1016/j.bbalip.2007.02.006] [PMID: 17392020]
[12]
Joshi, S.R. Saroglitazar for the treatment of dyslipidemia in diabetic patients. Expert Opin. Pharmacother., 2015, 16(4), 597-606.
[http://dx.doi.org/10.1517/14656566.2015.1009894] [PMID: 25674933]
[13]
Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem., 2019, 166, 502-513.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.067] [PMID: 30739829]
[14]
Domínguez-Avila, J.A.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; de la Rosa, L.A. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int. J. Mol. Sci., 2016, 17(7), 1002-1019.
[http://dx.doi.org/10.3390/ijms17071002] [PMID: 27367676]
[15]
Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438.
[http://dx.doi.org/10.1016/j.apsb.2017.05.005] [PMID: 28752027]
[16]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[17]
Matsuda, H.; Nakamura, S.; Yoshikawa, M. Search for new type of PPARγ agonist-like anti-diabetic compounds from medicinal plants. Biol. Pharm. Bull., 2014, 37(6), 884-891.
[http://dx.doi.org/10.1248/bpb.b14-00037] [PMID: 24882400]
[18]
Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M.P. Resveratrol: Anti-obesity mechanisms of action. Molecules, 2014, 19(11), 18632-18655.
[http://dx.doi.org/10.3390/molecules191118632] [PMID: 25405284]
[19]
Iannelli, P.; Zarrilli, V.; Varricchio, E.; Tramontano, D.; Mancini, F.P. The dietary antioxidant resveratrol affects redox changes of PPARalpha activity. Nutr. Metab. Cardiovasc. Dis., 2007, 17(4), 247-256.
[http://dx.doi.org/10.1016/j.numecd.2005.12.011] [PMID: 17134953]
[20]
Inoue, H.; Jiang, X.F.; Katayama, T.; Osada, S.; Umesono, K.; Namura, S. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor α in mice. Neurosci. Lett., 2003, 352(3), 203-206.
[http://dx.doi.org/10.1016/j.neulet.2003.09.001] [PMID: 14625020]
[21]
Navarro, G.; Mart’ınez–Pinilla, E.; Ortiz, R.; No’e, V.; Ciudad, C.J.; Franco, R. Resveratrol and related stilbenoids, nutraceutical/dietary complements with health-promoting actions: Industrial production, safety, and the search for mode of action. Compr. Rev. Food Sc. F., 2018, 17(1), 808-826.
[http://dx.doi.org/10.1111/1541-4337.12359]
[22]
Teplova, V.V.; Isakova, E.P.; Klein, O.I.; Dergachova, D.I.; Gessler, N.N.; Deryabina, Y.I. Natural polyphenols: Biological activity, pharmacological potential. Means Metabol. Engineer. Appl. Biochem. Microbiol., 2018, 54(3), 221-237.
[23]
Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients, 2017, 9(11), 1188-1214.
[http://dx.doi.org/10.3390/nu9111188] [PMID: 29109374]
[24]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[25]
Hart, J.H. Role of phytostilbenes in decay and disease resistance. Annu. Rev. Phytopathol., 1981, 19(2), 437-458.
[http://dx.doi.org/10.1146/annurev.py.19.090181.002253]
[26]
Goldberg, D.M.; Hahn, S.E.; Parkes, J.G. Beyond alcohol: Beverage consumption and cardiovascular mortality. Clin. Chim. Acta, 1995, 237(1-2), 155-187.
[http://dx.doi.org/10.1016/0009-8981(95)06069-P] [PMID: 7664473]
[27]
Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights, 2016, 9(5), 51-57.
[http://dx.doi.org/10.4137/NMI.S32909] [PMID: 27512338]
[28]
Lasa, A.; Schweiger, M.; Kotzbeck, P.; Churruca, I.; Simón, E.; Zechner, R.; Portillo, M.P. Resveratrol regulates lipolysis via adipose triglyceride lipase. J. Nutr. Biochem., 2012, 23(4), 379-384.
[http://dx.doi.org/10.1016/j.jnutbio.2010.12.014] [PMID: 21543206]
[29]
Momtazi-Borojeni, A.A.; Katsiki, N.; Pirro, M.; Banach, M.; Rasadi, K.A.; Sahebkar, A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J. Cell. Physiol., 2019, 234(8), 12581-12594.
[http://dx.doi.org/10.1002/jcp.28134] [PMID: 30637725]
[30]
Huang, X.T.; Li, X.; Xie, M.L.; Huang, Z.; Huang, Y.X.; Wu, G.X.; Peng, Z.R.; Sun, Y.N.; Ming, Q.L.; Liu, Y.X.; Chen, J.P.; Xu, S.N. Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem. Biol. Interact., 2019, 306(1), 29-38.
[http://dx.doi.org/10.1016/j.cbi.2019.04.001] [PMID: 30954463]
[31]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Meta analisi- Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 351-377.
[http://dx.doi.org/10.3390/ijms20020351]
[32]
(a)Britton, R.G.; Kovoor, C.; Brown, K. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann. N. Y. Acad. Sci., 2015, 1348(1), 124-133.
[http://dx.doi.org/10.1111/nyas.12796] [PMID: 26099829]
(b)Akinwumi, B.C.; Bordun, K.M.; Anderson, H.D. Biological activities of stilbenoids. Int. J. Mol. Sci., 2018, 19(3), 792-817.
[http://dx.doi.org/10.3390/ijms19030792] [PMID: 29522491]
[33]
Bonnefont – Rousselot D. Resveratrol and cardiovascular diseases. Nutrients, 2016, 8, 250-274.
[http://dx.doi.org/10.3390/nu8050250]
[34]
Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell. Longev., 2015, 12(4)340520
[http://dx.doi.org/10.1155/2015/340520] [PMID: 26180583]
[35]
Deck, L.M.; Whalen, L.J.; Hunsaker, L.A.; Royer, R.E.; Vander Jagt, D.L. Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes. Bioorg. Med. Chem., 2017, 25(4), 1423-1430.
[http://dx.doi.org/10.1016/j.bmc.2017.01.005] [PMID: 28126440]
[36]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene based derivative. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[37]
Sadeghi, A.; Seyyed Ebrahimi, S.S.; Golestani, A.; Meshkani, R.; Meshkani, R. Resveratrol emeliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-kB pathway in a SIRT1-independent mechanism. J. Cell. Biochem., 2017, 118(9), 2654-2663.
[http://dx.doi.org/10.1002/jcb.25868] [PMID: 28059488]
[38]
Chou, Y-C.; Ho, C-T.; Pan, M-H. Stilbenes: Chemistry and molecular mechanisms of anti-obesity. Curr. Pharmacol. Rep., 2018, 4(3), 202-209.
[http://dx.doi.org/10.1007/s40495-018-0134-5]
[39]
De Filippis, B.; Ammazzalorso, A.; Amoroso, R.; Giampietro, L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev. Res., 2019, 80(3), 285-293.
[http://dx.doi.org/10.1002/ddr.21525] [PMID: 30790326]
[40]
Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem., 2018, 158(1), 91-105.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.009] [PMID: 30205261]
[41]
Velmurugan, B.K.; Rathinasamy, B.; Lohanathan, B.P.; Thiyagarajan, V.; Weng, C-F. Neuroprotective role of phytochemicals. Molecules, 2018, 23(10), 2485-2500.
[http://dx.doi.org/10.3390/molecules23102485] [PMID: 30262792]
[42]
Yang, H.; Xiao, L.; Wang, N. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions. J. Diabetes, 2017, 9(4), 341-352.
[http://dx.doi.org/10.1111/1753-0407.12506] [PMID: 27863018]
[43]
Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jäger, W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm. Res., 2010, 27(6), 1042-1048.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[44]
Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; Vannini, V. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem., 2001, 276(25), 22586-22594.
[http://dx.doi.org/10.1074/jbc.M101846200] [PMID: 11316812]
[45]
Queiroz, A.N.; Gomes, B.A.Q.; Moraes, W.M., Jr; Borges, R.S. A theoretical antioxidant pharmacophore for resveratrol. Eur. J. Med. Chem., 2009, 44(4), 1644-1649.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.023] [PMID: 18976835]
[46]
De Filippis, B.; De Lellis, L.; Florio, R.; Ammazzalorso, A.; Amoia, P.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R.; Veschi, S.; Cama, A. Synthesis and cytotoxic effects on pancreatic cancer cells of resveratrol analogs. Med. Chem. Res., 2019, 28(2), 984-991.
[http://dx.doi.org/10.1007/s00044-019-02351-3]
[47]
Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A. Comprehensive review on the antimicrobial potency of the plant polyphenol resveratrol. Biomed. Pharmacother., 2017, 95(3), 1588-1595.
[http://dx.doi.org/10.1016/j.biopha.2017.09.084] [PMID: 28950659]
[48]
Takizawa, Y.; Nakata, R.; Fukuhara, K.; Yamashita, H.; Kubodera, H.; Inoue, H. The 4′-hydroxyl group of resveratrol is functionally important for direct activation of PPARα. PLoS One, 2015, 10(3)e0120865
[http://dx.doi.org/10.1371/journal.pone.0120865] [PMID: 25798826]
[49]
Barone, R.; Rizzo, R.; Tabbì, G.; Malaguarnera, M.; Frye, R.E.; Bastin, J. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(8), 1878-1894.
[http://dx.doi.org/10.3390/ijms20081878] [PMID: 30995737]
[50]
Rimando, A.M.; Nagmani, R.; Feller, D.R.; Yokoyama, W. Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor α-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J. Agric. Food Chem., 2005, 53(9), 3403-3407.
[http://dx.doi.org/10.1021/jf0580364] [PMID: 15853379]
[51]
Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, stability, and biological activity of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215(1), 48-59.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05871.x] [PMID: 21261641]
[52]
Yang, T.; Wang, L.; Zhu, M.; Zhang, L.; Yan, L. Properties and molecular mechanisms of resveratrol: A review. Pharmazie, 2015, 70(8), 501-506.
[PMID: 26380517]
[53]
Cottart, C-H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J-L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res., 2010, 54(1), 7-16.
[http://dx.doi.org/10.1002/mnfr.200900437] [PMID: 20013887]
[54]
Das, S.; Lin, H.S.; Ho, P.C.; Ng, K.Y. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm. Res., 2008, 25(11), 2593-2600.
[http://dx.doi.org/10.1007/s11095-008-9677-1] [PMID: 18629618]
[55]
Arora, D.; Jaglan, S. Therapeutic applications of resveratrol nanoformulations. Environ. Chem. Lett., 2018, 16, 35-41.
[http://dx.doi.org/10.1007/s10311-017-0660-0]
[56]
Mizuno, C.S.; Ma, G.; Khan, S.; Patny, A.; Avery, M.A.; Rimando, A.M. Design, synthesis, biological evaluation and docking studies of pterostilbene analogs inside PPAR alpha. Bioorg. Med. Chem., 2008, 16(7), 3800-3808.
[http://dx.doi.org/10.1016/j.bmc.2008.01.051] [PMID: 18272370]
[57]
Kim, M.K.; Chong, Y. Design, synthesis, and biological evaluation of resveratrol derivatives as PPARα agonists. J. Korean Soc. Appl. Biol. Chem., 2013, 56(2), 353-356.
[http://dx.doi.org/10.1007/s13765-013-3086-9]
[58]
Nikhil, K.; Sharan, S.; Singh, A.K.; Chakraborty, A.; Roy, P. Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: Involvement of PPARγ. PLoS One, 2014, 9(8)e104592
[http://dx.doi.org/10.1371/journal.pone.0104592] [PMID: 25119466]
[59]
Lieber, S.; Scheer, F.; Meissner, W.; Naruhn, S.; Adhikary, T.; Müller-Brüsselbach, S.; Diederich, W.E.; Müller, R. (Z)-2-(2-Bromophenyl)-3-[4-(1-methyl-piperazine) amino] phenyl-acrylonitrile (DG172): An orally bioavailable PPARβ/δ-selective ligand with inverse agonistic properties. J. Med. Chem., 2012, 55(3), 2858-2868.
[http://dx.doi.org/10.1021/jm2017122] [PMID: 22369181]
[60]
Das, N.; Dhanawat, M.; Dash, B.; Nagarwal, R.C.; Shrivastava, S.K. Codrug: an efficient approach for drug optimization. Eur. J. Pharm. Sci., 2010, 41(5), 571-588.
[http://dx.doi.org/10.1016/j.ejps.2010.09.014] [PMID: 20888411]
[61]
Amoroso, R.; Leporini, L.; Cacciatore, I.; Marinelli, L.; Ammazzalorso, A.; Bruno, I.; De Filippis, B.; Fantacuzzi, M.; Maccallini, C.; Menghini, L.; Di Stefano, A.; Giampietro, L. Synthesis, characterization and evaluation of gemfibrozil-stilbene hybrid as antioxidant agent. LDDD, 2018, 15(2), 1230-1238.
[http://dx.doi.org/10.2174/1570180815666180321163246]
[62]
Giampietro, L.; Ammazzalorso, A.; Amoroso, R.; De Filippis, B. Development of fibrates as important scaffold in medicinal chemistry. ChemMedChem, 2019.
[http://dx.doi.org/10.1002/cmdc.201900128] [PMID: 30957432]
[63]
Li, W.; He, X.; Shi, W.; Jia, H.; Zhong, B. Pan-PPAR agonists based on the resveratrol scaffold: Biological evaluation and docking studies. ChemMedChem, 2010, 5(12), 1977-1982.
[http://dx.doi.org/10.1002/cmdc.201000360] [PMID: 20973122]
[64]
Giampietro, L.; Ammazzalorso, A.; Bruno, I.; Carradori, S.; De Filippis, B.; Fantacuzzi, M.; Giancristofaro, A.; Maccallini, C.; Amoroso, R. Synthesis of naphthyl-, quinolin- and anthracenyl- analogues of clofibric acid as PPARα agonists. Chem. Biol. Drug Des., 2016, 87(3), 467-471.
[http://dx.doi.org/10.1111/cbdd.12677] [PMID: 26502898]
[65]
Ammazzalorso, A.; Amoroso, R.; Bettoni, G.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Tricca, M.L. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives. Chirality, 2008, 20(2), 115-118.
[http://dx.doi.org/10.1002/chir.20505] [PMID: 18074337]
[66]
Giampietro, L.; D’Angelo, A.; Giancristofaro, A.; Ammazzalorso, A.; De Filippis, B.; Di Matteo, M.; Fantacuzzi, M.; Linciano, P.; Maccallini, C.; Amoroso, R. Effect of stilbene and chalcone scaffolds incorporation in clofibric acid on PPARα agonistic activity. Med. Chem., 2014, 10(1), 59-65.
[http://dx.doi.org/10.2174/157340641001131226123613] [PMID: 23432317]
[67]
Giampietro, L.; D’Angelo, A.; Giancristofaro, A.; Ammazzalorso, A.; De Filippis, B.; Fantacuzzi, M.; Linciano, P.; Maccallini, C.; Amoroso, R. Synthesis and structure-activity relationships of fibrate-based analogues inside PPARs. Bioorg. Med. Chem. Lett., 2012, 22(24), 7662-7666.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.111] [PMID: 23102891]
[68]
dos Santos, J.C.; Bernardes, A.; Giampietro, L.; Ammazzalorso, A.; De Filippis, B.; Amoroso, R.; Polikarpov, I. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J. Struct. Biol., 2015, 191(3), 332-340.
[http://dx.doi.org/10.1016/j.jsb.2015.07.006] [PMID: 26185032]
[69]
Giampietro, L.; Laghezza, A.; Cerchia, C.; Florio, R.; Recinella, L.; Capone, F.; Ammazzalorso, A.; Bruno, I.; De Filippis, B.; Fantacuzzi, M.; Ferrante, C.; Maccallini, C.; Tortorella, P.; Verginelli, F.; Brunetti, L.; Cama, A.; Amoroso, R.; Loiodice, F.; Lavecchia, A. Novel Phenyldiazenyl Fibrate Analogues as PPAR α/γ/δ Pan-Agonists for the amelioration of metabolic syndrome. ACS Med. Chem. Lett., 2019, 10(4), 545-551.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00574] [PMID: 30996794]
[70]
De Filippis, B.; Giancristofaro, A.; Ammazzalorso, A.; D’Angelo, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Petruzzelli, M.; Amoroso, R. Discovery of gemfibrozil analogues that activate PPARα and enhance the expression of gene CPT1A involved in fatty acids catabolism. Eur. J. Med. Chem., 2011, 46(10), 5218-5224.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.022] [PMID: 21889235]
[71]
De Filippis, B.; Agamennone, M.; Ammazzalorso, A.; Bruno, I.; D’angelo, A.; Di Matteo, M.; Fantacuzzi, M.; Giampietro, L.; Giancristofaro, A.; Maccallini, C.; Amoroso, R. PPARα agonists based on stilbene and its bioisosteres: Biological evaluation and docking Studies. MedChemComm, 2015, 6, 1513-1517.
[http://dx.doi.org/10.1039/C5MD00151J]
[72]
Xu, H.E.; Lambert, M.H.; Montana, V.G.; Plunket, K.D.; Moore, L.B.; Collins, J.L.; Oplinger, J.A.; Kliewer, S.A.; Gampe, R.T., Jr; McKee, D.D.; Moore, J.T.; Willson, T.M. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13919-13924.
[http://dx.doi.org/10.1073/pnas.241410198] [PMID: 11698662]
[73]
De Filippis, B.; Linciano, P.; Ammazzalorso, A.; Di Giovanni, C.; Fantacuzzi, M.; Giampietro, L.; Laghezza, A.; Maccallini, C.; Tortorella, P.; Lavecchia, A.; Loiodice, F.; Amoroso, R. Structural development studies of PPARs ligands based on tyrosine scaffold. Eur. J. Med. Chem., 2015, 89, 817-825.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.083] [PMID: 25462281]
[74]
Nicolakakis, N.; Hamel, E. The Nuclear receptor PPARgamma as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Front. Aging Neurosci., 2010, 2(1), 1-10.
[http://dx.doi.org/10.3389/fnagi.2010.00021] [PMID: 20725514]
[75]
Giampietro, L.; Gallorini, M.; De Filippis, B.; Amoroso, R.; Cataldi, A.; di Giacomo, V. PPAR-γ agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem. Int., 2019, 126(2), 239-245.
[http://dx.doi.org/10.1016/j.neuint.2019.03.021] [PMID: 30946848]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 19
Year: 2019
Published on: 02 June, 2019
Page: [1599 - 1610]
Pages: 12
DOI: 10.2174/1389557519666190603085026
Price: $65

Article Metrics

PDF: 32
HTML: 3