Antimicrobial Activity of SPC13, New Antimicrobial Peptide Purified from Scolopendra polymorpha Venom

Author(s): Rodríguez-Alejandro C.I., M.C. Gutiérrez*

Journal Name: Anti-Infective Agents
Formerly Anti-Infective Agents in Medicinal Chemistry

Volume 18 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Introduction: Currently animal venoms are considered a potential source of numerous bioactive peptides of biochemical and pharmacological interest, such as peptides with antithrombotic, anticoagulant and antimicrobial activity.

Methods: Such is the case of the venom from the genus Scolopendromorpha, where numerous PAMs ranging from 2.5 to 4.4 kDa have been purified, they are broad spectrum isolates only of S. subspinipes mutilans.

Results: In this study, an antimicrobial peptide (SPC13) of 13 kDa, present in the venom of Scolopendra polymorpha was purified by electroelution and presented antimicrobial activity against S. aureus and P. aeruginosa with MIC of 45 and 192.5 μg/ml respectively, as well as bacteriostatic activity against E. coli at a concentration of 155μg/ml.

Conclusion: Additionally, this peptide has a 20.5% hemolytic activity. A partial sequence of SPC13 showed 98% identity with the histone H3 reported in S. viridis (GenkBank: DQ222181.1).

Keywords: Antimicrobial peptide, Scolopendra polymorpha, SPC13, venom, resistance, hemolytic activity.

[1]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 1-37.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[2]
Review: Basic aspects of the mechanisms of bacterial resistance. Rev. Médica MD, 2013, 4(3), 186-191.
[3]
Resistance to antibacterial drugs.Antimicrobial Resistance: Global Report on Surveillance; WHO Library Cataloguing-in-Publication, 2014, 1-10.
[4]
Li, X.Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs, 2009, 69(12), 1555-1623.
[http://dx.doi.org/10.2165/11317030-000000000-00000] [PMID: 19678712]
[5]
Truman, A.; Jung, M.; Cheng, J. Hwan S, Suh J-W and Hong H-J. Antibiotic Resistance Mechanisms Inform Discovery: Identification and Characterization of a Novel Amycolatopsis Strain Producing Ristocetin. Antimicrob. Agents Chemother., 2015, 58(10), 5687-5695.
[6]
Montaño-Pérez, K.; Vargas-Albores, F. Péptidos Antimicrobianos: un mecanismo de defensa ancestral con mucho futuro. Interciencia, 2002, 27(1), 21-27.
[7]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[8]
Mojsoska, B.; Jenssen, H. Peptides and Peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel), 2015, 8(3), 366-415.
[http://dx.doi.org/10.3390/ph8030366] [PMID: 26184232]
[9]
Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[10]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[11]
Müller, U.; Vogel, P.; Alber, G.; Schaub, G.A. The innate immune system of mammals and insects. Contrib. Microbiol., 2008, 15, 21-44.
[PMID: 18511854]
[12]
Kuhn-Nentwig, L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci., 2003, 60(12), 2651-2668.
[http://dx.doi.org/10.1007/s00018-003-3106-8] [PMID: 14685689]
[13]
Minelli, A. Treatise on Zoology - Anatomy, Taxonomy, Biology. The Myriapoda; Brill, 2011, Vol. 1, pp. 2-22.
[http://dx.doi.org/10.1163/9789004188266]
[14]
Kong, Y.; Hui, J.; Huang, S.; Chen, H.; Wei, J. Cytotoxic and anticoagulant peptide from Scolopendra subspinipes mutilans venom. Afr. J. Pharm. Pharmacol., 2013, 7(31), 2238-2245.
[http://dx.doi.org/10.5897/AJPP2013.3765]
[15]
Peng, K.; Kong, Y.; Zhai, L.; Wu, X.; Peng, J.; Liu, J.; Yu, H. Two novel antimicrobial peptides from centipede venoms. Toxicon, 2009, 30, 1-6.
[PMID: 19716842]
[16]
Wenhua, R.; Shuangquan, Z.; Daxiang, S.; Kaiya, Z.; Guang, Y. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys., 2006, 43(2), 88-93.
[PMID: 16955756]
[17]
Kwon, Y.N.; Lee, J.H.; Kim, I.W.; Kim, S.H.; Yun, E.Y.; Nam, S.H.; Ahn, M.Y.; Jeong, M.; Kang, D.C.; Lee, I.H.; Hwang, J.S. Antimicrobial activity of the synthetic peptide scolopendrasin ii from the centipede Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol., 2013, 23(10), 1381-1385.
[http://dx.doi.org/10.4014/jmb.1306.06013] [PMID: 23801249]
[18]
Kong, Y.; Huang, S.L.; Shao, Y.; Li, S.; Wei, J.F. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. J. Ethnopharmacol., 2013, 145(1), 182-186.
[http://dx.doi.org/10.1016/j.jep.2012.10.048] [PMID: 23127646]
[19]
Choi. H., Hwang. J-S. and Lee. D. Identification of a novel antimicrobial peptide, Scolopendin 1, derived from centipede Scolpendra sub-spinipes mutilans and its antifungal mechanism. Insect Mol. Biol., 2014, 23(6), 788-799.
[http://dx.doi.org/10.1111/imb.12124] [PMID: 25209888]
[20]
Lee. H., Hwang. J-S., Lee. J., Kim. J. and Lee. D. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochimica et Biophysisca, 2015, 1848, 634-642.
[http://dx.doi.org/10.1016/j.bbamem.2014.11.016]
[21]
Lowry, 0.H.; Rosebrough, N.J.; Farr, A. L; Randall, R.J. J. Biol. Chem., 1951, 193, 265-275.
[22]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[23]
Edman, P.; Begg, G. A protein sequenator. Eur. J. Biochem., 1967, 1(1), 80-91.
[http://dx.doi.org/10.1111/j.1432-1033.1967.tb00047.x] [PMID: 6059350]
[24]
Clinical Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing; 27 informational supplement CLSI document M100-S27 Clinical Laboratory Standards Institute. 2017.
[25]
Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Insects, arachnids and centipedes venom: a powerful weapon against bacteria. A literature review. Toxicon, 2017, 130, 91-103.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.020] [PMID: 28242227]
[26]
Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb.), 2014, 94(4), 363-373.
[http://dx.doi.org/10.1016/j.tube.2014.03.011] [PMID: 24813349]
[27]
Mukherjee, S.; Hooper, L.V. Antimicrobial defense of the intestine. Immunity, 2015, 42(1), 28-39.
[http://dx.doi.org/10.1016/j.immuni.2014.12.028] [PMID: 25607457]
[28]
Arnold, RR; Brewer, M; Gauthier, JJ Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms Infect Immun, 1980, 28(3)893e8
[29]
Levay, P.; Vilojoen, M. Lactoferrin: a general review. Haematologica, 1995, 80, 252-267.
[30]
Smith, V.; Desbois, A.; Dyrynda, E. Conventional and unconventional antimicrobials from fish marine invertebrates and microalgae, Merine drugs 2010, 8, 1213-1262.
[31]
Relf, J.M.; Chisholm, J.R.; Kemp, G.D.; Smith, V.J. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur. J. Biochem., 1999, 264(2), 350-357.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00607.x] [PMID: 10491079]
[32]
Nikapitiya. C., Dorrington. T. and Gomez-Chiarri. M. Review: the role of histone in the inmune responses of acuatic invetrebrates. ISSN, 2013, 10, 94-101.
[33]
Lee. D., Huang. C., Teruaki. N., Thiboutot. D., Kang. S., Monestier. M. and Gallo. R. Histone H4 is a major compoenent of the antimicro-bial action of human sebocytes, NIH public. Access, 2009, 129(10), 2489-2496.
[34]
Seo. J., Stephenson J. and Noga. E. Multiple antibacterials histone H2B proteins are expressed in tissues of American oyster. Comparative Biochemistry and Physiology, Part B, Elsevier, 2010, 158, 223-229.
[35]
Cho, J.H.; Park, I.Y.; Kim, H.S.; Lee, W.T.; Kim, M.S.; Kim, S.C. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J., 2002, 16(3), 429-431.
[http://dx.doi.org/10.1096/fj.01-0736fje] [PMID: 11821259]
[36]
Park.Y. Park. C.,Kim. M. and Kim. S. Parasin I an antimicrobial peptide derived from histone H2A in the catfish Parasilurus asotus. FEBS Lett., 1998, 434, 258-262.
[37]
Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta, 2009, 1788(8), 1564-1569.
[http://dx.doi.org/10.1016/j.bbamem.2008.10.025] [PMID: 19041293]
[38]
Hirsch, J.G. Bactericidal action of histone. J. Exp. Med., 1958, 108(6), 925-944.
[http://dx.doi.org/10.1084/jem.108.6.925] [PMID: 13598820]
[39]
Miller, B.F.; Abrams, R.; Dorfman, A.; Klein, M. Antibacterial properties of protamine and histone. Science, 1942, 96(2497), 428-430.
[http://dx.doi.org/10.1126/science.96.2497.428] [PMID: 17729719]
[40]
Smith. V. and Dyrynda. E. Antimicrobial proteins: From old proteins, new ticks. Mol. Immunol. Elsevier, 2015, 68, 383-398.
[http://dx.doi.org/10.1016/j.molimm.2015.08.009]
[41]
Smith, V.; Desbois, A.; Dyrynda, E. Conventional and unconventional antimicrobials from fish marine invertebrates and microalgae, Merine drugs 2010, 8, 1213-1262.


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 3
Year: 2020
Page: [233 - 238]
Pages: 6
DOI: 10.2174/2211352517666190531110829

Article Metrics

PDF: 23
HTML: 1