Advances in Strain Engineering for Improved Bio-fuel Production- a Perspective

Author(s): Supriya Ratnaparkhe*, Milind B. Ratnaparkhe

Journal Name: Current Metabolomics and Systems Biology
Formerly Current Metabolomics

Volume 7 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Abstract:

Bio-fuels are ecologically sustainable alternates of fossil fuel and have attracted interest of research community in the last few decades. Microorganisms such as bacteria, fungi and microalgae have important roles to play at various steps of bio-fuel production. And therefore several efforts such as genetic engineering have been made to improve the performance of these microbes to achieve the desired results. Metabolic engineering of organisms has benefitted immensely from the novel tools and technologies that have recently been developed. Microorganisms have the advantage of smaller and less complex genome and hence are best suitable for genetic manipulations. In this perspective, we briefly review a few interesting studies which represent some recent advances in the field of metabolic engineering of microbes.

[1]
Derkx, P.M.; Janzen, T.; Sørensen, K.I.; Christensen, J.E.; Stuer-Lauridsen, B.; Johansen, E. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology. Microb. Cell Fact., 2014, 13(Suppl. 1), S5.
[http://dx.doi.org/10.1186/1475-2859-13-S1-S5] [PMID: 25186244]
[2]
Brunk, E.; George, K.W.; Alonso-Gutierrez, J.; Thompson, M.; Baidoo, E.; Wang, G.; Petzold, C.J.; McCloskey, D.; Monk, J.; Yang, L.; O’Brien, E.J.; Batth, T.S.; Martin, H.G.; Feist, A.; Adams, P.D.; Keasling, J.D.; Palsson, B.O.; Lee, T.S. Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow. Cell Syst., 2016, 2(5), 335-346.
[http://dx.doi.org/10.1016/j.cels.2016.04.004] [PMID: 27211860]
[3]
Kobayashi, Y.; Sahara, T.; Ohgiya, S.; Kamagata, Y.; Fujimori, K.E. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express, 2018, 8(1), 139.
[http://dx.doi.org/10.1186/s13568-018-0670-8] [PMID: 30151682]
[4]
Li, Y.J.; Wang, M.M.; Chen, Y.W.; Wang, M.; Fan, L.H.; Tan, T.W. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Sci. Rep., 2017, 7, 43875.
[http://dx.doi.org/10.1038/srep43875] [PMID: 28262754]
[5]
Ratnaparkhe, S.; Ratnaparkhe, M.B.; Jaiswal, A.K.; Kumar, A. Strain Engineering for Improved Bio-Fuel Production. Curr. Metabolomics, 2016, 4(1), 38-48.
[http://dx.doi.org/10.2174/2213235X03666150818222343]
[6]
Soma, Y.; Tsuruno, K.; Wada, M.; Yokota, A.; Hanai, T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab. Eng., 2014, 23, 175-184.
[http://dx.doi.org/10.1016/j.ymben.2014.02.008] [PMID: 24576819]
[7]
Xu, P.; Li, L.; Zhang, F.; Stephanopoulos, G.; Koffas, M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. USA, 2014, 111(31), 11299-11304.
[http://dx.doi.org/10.1073/pnas.1406401111] [PMID: 25049420]
[8]
Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.; Wyss, M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol., 2014, 40(3), 187-206.
[http://dx.doi.org/10.3109/1040841X.2013.770386] [PMID: 23488872]
[9]
Shabbir Hussain, M.; Gambill, L.; Smith, S.; Blenner, M.A. Engineering promoterarchitecture in oleaginous yeast Yarrowia lipolytica. ACS Synth. Biol., 2016, 5(3), 213-223.
[http://dx.doi.org/10.1021/acssynbio.5b00100] [PMID: 26635071]
[10]
Shabbir Hussain, M.; Wheeldon, I.; Blenner, M.A. A strong hybrid fatty acid inducible transcriptional sensor built from Yarrowia lipolytica upstream activating and regulatory sequences. Biotechnol. J., 2017, 12(10), 1-11.
[http://dx.doi.org/10.1002/biot.201700248] [PMID: 28731568]
[11]
Silverman, A.M.; Qiao, K.; Xu, P.; Stephanopoulos, G. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol., 2016, 100(8), 3781-3798.
[http://dx.doi.org/10.1007/s00253-016-7376-0] [PMID: 26915993]
[12]
Guo, Z.P.; Robin, J.; Duquesne, S.; O’Donohue, M.J.; Marty, A.; Bordes, F. Developing cellulolytic Yarrowia lipolytica as a platform for the production of valuable products in consolidated bioprocessing of cellulose. Biotechnol. Biofuels, 2018, 11, 141.
[http://dx.doi.org/10.1186/s13068-018-1144-6] [PMID: 29785208]
[13]
Singh, N.; Mathur, A.S.; Tuli, D.K.; Gupta, R.P.; Barrow, C.J.; Puri, M. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels, 2017, 10, 73.
[http://dx.doi.org/10.1186/s13068-017-0756-6] [PMID: 28344648]
[14]
Raftery, J.P.; Karim, M.N. Economic viability of consolidated bioprocessing utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol production. Biomass Bioenergy, 2017, 103, 35-46.
[http://dx.doi.org/10.1016/j.biombioe.2017.05.012]
[15]
Lamed, R.; Kenig, R.; Setter, E.; Bayer, E.A. Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb. Technol., 1985, 7, 37-41.
[http://dx.doi.org/10.1016/0141-0229(85)90008-0]
[16]
Zhang, J.; Liu, S.; Li, R.; Hong, W.; Xiao, Y.; Feng, Y.; Cui, Q.; Liu, Y.J. Efficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum. Biotechnol. Biofuels, 2017, 10, 124.
[http://dx.doi.org/10.1186/s13068-017-0796-y] [PMID: 28507596]
[17]
Xin, F.; Dong, W.; Zhang, W.; Ma, J.; Jiang, M. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing Trends Biotechnol. Incomplete., 2018, 37, 167-180.
[http://dx.doi.org/10.1016/j.tibtech.2018.08.007]
[18]
Yang, X.; Xu, M.; Yang, S-T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab. Eng., 2015, 32, 39-48.
[http://dx.doi.org/10.1016/j.ymben.2015.09.001] [PMID: 26365585]
[19]
Avidan, O.; Brandis, A.; Rogachev, I.; Pick, U. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata. J. Exp. Bot., 2015, 66(13), 3725-3735.
[http://dx.doi.org/10.1093/jxb/erv166] [PMID: 25922486]
[20]
Rengel, R.; Smith, R.T.; Haslam, R.P.; Sayanova, O.; Vila, M.; León, R. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res., 2018, 31, 183-193.
[21]
Zulu, N.N.; Popko, J.; Zienkiewicz, K.; Tarazona, P.; Herrfurth, C.; Feussner, I. Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum. Biotechnol. Biofuels, 2017, 10, 187.
[http://dx.doi.org/10.1186/s13068-017-0874-1] [PMID: 28725267]
[22]
Dinamarca, J.; Levitan, O.; Kumaraswamy, G.K.; Lun, D.S.; Falkowski, P.G. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. J. Phycol., 2017, 53(2), 405-414.
[http://dx.doi.org/10.1111/jpy.12513] [PMID: 28078675]
[23]
Miao, R.; Liu, X.; Englund, E.; Lindberg, P.; Lindblad, P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metab. Eng. Commun., 2017, 5, 45-53.
[http://dx.doi.org/10.1016/j.meteno.2017.07.003] [PMID: 29188183]
[24]
Miao, R.; Xie, H.M.; Ho, F.; Lindblad, P. Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803. Metab. Eng., 2018, 47, 42-48.
[http://dx.doi.org/10.1016/j.ymben.2018.02.014] [PMID: 29501927]
[25]
Javed, M.R.; Noman, M.; Shahid, M.; Ahmed, T.; Khurshid, M.; Rashid, M.H.; Ismail, M.; Sadaf, M.; Khan, F. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol. Res., 2019, 219, 1-11.
[http://dx.doi.org/10.1016/j.micres.2018.10.010.]
[26]
Rodriguez, E. Ethical issues in genome editing using Crispr/Cas9 system. J. Clin. Res. Bioeth., 2016, 7(2), 266.
[27]
Zaidi, S.S.; Mahfouz, M.M.; Mansoor, S. CRISPR-Cpf1: A New Tool for Plant Genome Editing. Trends Plant Sci., 2017, 22(7), 550-553.
[http://dx.doi.org/10.1016/j.tplants.2017.05.001] [PMID: 28532598]
[28]
Zhang, J.; Hong, W.; Zong, W.; Wang, P.; Wang, Y. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system. J. Biotechnol., 2018, 20(284), 27-30.
[29]
Jin, Y.S.; Cate, J.H. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol., 2017, 41, 99-106.
[http://dx.doi.org/10.1016/j.cbpa.2017.10.025] [PMID: 29127883]
[30]
Shin, Y.S.; Jeong, J.; Nguyen, T.H.T.; Kim, J.Y.H.; Jin, E.; Sim, S.J. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour. Technol., 2019, 271, 368-374.
[http://dx.doi.org/10.1016/j.biortech.2018.09.121.]
[31]
Mehmood, M.A.; Shahid, A.; Xiong, L.; Ahmad, N.; Liu, C.; Bai, F.; Zhao, X. Development of Synthetic Microbial Platforms to Convert Lignocellulose Biomass to Biofuels Adv. Bioenergy, 2017, 2, 233-278.
[32]
Fatma, Z.; Hartman, H.; Poolman, M.G.; Fell, D.A.; Srivastava, S.; Shakeel, T.; Yazdani, S.S. Model assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metab. Eng., 2018, 46, 1-12.
[http://dx.doi.org/10.1016/j.ymben.2018.01.002.]


promotion: free to download

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 1
Year: 2020
Published on: 06 September, 2020
Page: [1 - 5]
Pages: 5
DOI: 10.2174/2213235X07999190528085552

Article Metrics

PDF: 18
HTML: 1