A Novel Simple Differentiator Circuit Based on Carbon Nano Tube Field Effect Transistors Voltage Difference Transconductance Amplifier

Author(s): Avireni Bhargav*, Jitendra Kumar Saini

Journal Name: Micro and Nanosystems

Volume 11 , Issue 2 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


This paper brings in a new design, namely, voltage mode differentiator with an active element, Carbon Nanotube Field Effect Transistors Voltage Difference Transconductance Amplifier (CNVDTA). The circuit thus proposed needs one Carbon Nanotube Field Effect Transistors Voltage Difference Transconductance Amplifier (CNVDTA) element and a single capacitor. While fabricating IC’s in VLSI design, the proposed circuit proves more adaptable and applicable with the anticipated results.

Methods: The proposed CNVDTA based voltage mode differentiator in CNFET technology was simulated at 32 nm at a voltage supply of ±0.9 V using the Cadence Virtuoso CAD tool.

Results: It is also reported that the proposed circuit would function with ±0.9 V supply voltage and would also take care of the bias current of the order of 150 µA. Further, on the part of the transconductance (gm), it is electronically tunable with the help of bias current.

Conclusion: The CNVDTA based differentiator has been found to be very useful in the triggering circuit of CRO’s, wave shaping circuits, power control circuits etc. It is also found useful in detecting the high-frequency components in the input signals.

Keywords: Carbon nanotube field effect transistors, differentiator, carbon nanotube field effect transistors voltage difference transconductance amplifier, CNVDTA, voltage-mode, low voltage.

Deng, J.; Wong, H.S.P. A compact SPICE model for carbon nanotube field effect transistors including non-idealities and its application-part I: Model of the intrinsic channel region. IEEE Trans. Electron Dev., 2007, 54(12), 3186-3194.
Javey, A.; Guo, J.; Farmer, D.B.; Wang, Q.; Yenilmez, E.; Gordon, R.G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett., 2004, 4, 1319-1322.
Javey, A.; Tu, R.; Farmer, D.B.; Guo, J.; Gordon, R.G.; Dai, H. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett., 2005, 5(2), 345-348.
Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett., 2003, 3, 1541-1544.
Yao, Z.; Kane, C.L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett., 2000, 84(13), 2941-2944.
Mc Euen, P.L.; Fuhrer, M.S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. NanoTechnol., 2002, 1, 78-85.
Guerrero, A.F.G.; Farfan, A.J.U.; Tacca, H.; Plata, E.A.C. IGBT Series connection with soft switching and power recovery in driver power supply. IEEE Trans. Power Electron., 2019, 1-1.
Ram, S.; Rahi, O.P.; Sharma, V.; Murthy, K.S.R. Investigations in to induction motor drive using slip power recovery scheme with GTO inverter and chopper. In: Proceedings of the 14th IEEE India Council International Conference (INDICON), 2017, pp. 1-6.
Pennington, G.; Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2003, 68(4)045426
Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capability of carbon nanotubes. Appl. Phys. Lett., 2001, 79, 1172-1174.
Appenzeller, J. Carbon nanotubes for high-performance electronics - Progress and prospect. In: Proceedings of the IEEE, 2008, 96(2), 201-211.
Saini, J.K.; Srinivasulu, A.; Singh, B.P. A new low-power fulladder cell for low voltage using CNTFETs. In: Proceedings of IEEE International Conference on Electronics, Computers and Artificial Intelligence (IEEE ECAI 2017), Targoviste, Romania. 2017, p. 6.
Kavitha, P.; Sarada, M.; Vijayavardhan, K.; Sudhavani, Y. Carbon nano tube field effect transistors based ternary Ex-OR and Ex-NOR gates. Curr. Nanosci., 2016, 12(4), 1-7.
Bhargav, A.; Srinivasulu, A.; Pal, D. An operational transconductance amplifiers based sinusoidal oscillator using CNTFETs. In: IEEE International Conference on Applied Electronics (AE), 2018, pp. 1-6.
Kartik, P.L.; Balakrishna, K.; Sarada, M. A new low voltage high performance Dual Port 7-CNT SRAM Cell with improved differential reference based sense amplifier. Int. J. Sensors Wirel. Commun. Control, 2017, 7(3), 246-254.
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
Johnson, R.C. 2010.Available from. http://www.eetimes.com/ document.asp? doc_id=1172918
Kedzierski, J.; Pei-Lan, H.; Healey, P.; Wyatt, P.W.; Keast, C.L.; Sprinkle, M.; Berger, C.; De, H.; Walt, A. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Dev., 2008, 55(8), 2078-2085.
Bullis, K. 2008.Available from. http://www.technologyreview.com/ news/409449/ (Accessed on Jan 28, 2008).
Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett., 2008, 100(20)206803
Biolek, D.; Senani, R.; Biolková, V.; Kolka, Z. Active elements for analog signal processing: Classification, review, and new proposals. Wuxiandian Gongcheng, 2008, 17(4), 15-32.
Siripruchyanun, M.; Payakkakul, K.; Pipatthitikorn, P.; Satthaphol, P. A current mode square/triangular wave generator based on multiple- output VDTA’s. Int. Electr. Eng. Congress, 2016, 86, 152-155.
Shankar, C.; Singh, S.V. Electronically tunable current mode biquad filter based on single VDTA and grounded passive elements. Int. J. Eng. Technol., 2017, 9(2), 271-279.
Mehra, R.; Kumar, V.; Aminul, I. Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. Int. J. Electron. Commun., 2018, 83, 1-10.
Yesil, A.; Kacar, F.; Kuntman, H. New simple CMOS realization of voltage difference transconductance amplifier and its RF filter application. Wuxiandian Gongcheng, 2011, 20(3), 632-637.
Gupta, G.; Singh, S.V.; Bhooshan, S.V. VDTA based electronically tunable voltage- mode and trans-admittance biquad filter. Circ. Syst., 2015, 6, 93-102.
Yesil, A.; Kacar, F. Electronically tunable resistor less mixed-mode biquad filters. Radioengineering, 2013, 22(4), 1016-1025.biquad filters. Radioengineering, 2013, 22(4), 1016-1025.
Alaybeyoglu, E.; Kuntman, H. CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integr. Circuits Signal Process., 2016, 89(3), 675-684.
Prasad, D.; Ahmad, J.; Srivastava, M. A novel grounded to floating admittance converter with electronic control. Indian J. Phys., 2018, 92(1), 1077.
Chen, H.P.; Hwang, Y.S.; Ku, Y.T. A new resistorless and electronic tunable third-order quadrature oscillator with current and voltage outputs. Inst. Electron. Telecommun. Eng. Tech. Rev., 2018, 35(4), 426-438.
Pandey, N.; Kumar, P.; Paul, S.K. Voltage differencing transconductance amplifier based resistor less and electronically tunable wave active filter. Analog Integr. Circuits Signal Process., 2015, 84(1), 107-117.
Pal, D.; Srinivasulu, A.; Pal, B.B.; Demosthenous, A.; Das, B.N. Current conveyor-based square/triangular wave generators with improved linearity. IEEE Trans. Instrum. Meas., 2009, 58(7), 2174-2180.
Srinivasulu, A. Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. Int. J. Des. Anal. Tools Circ. Syst. (Hong-Kong), 2012, 3(2), 1-7.
Srinivasulu, A. A novel current conveyor based-Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl., 2011, 39(6), 679-686.
Pal, D.; Srinivasulu, A.; Goswami, M. Novel current-mode waveform generator with independent frequency and amplitude control. In: Proceedings of the IEEE International Symposium on Circuits and Systems, 2009, pp. 2946-2949.
[http://dx.doi.org/10.1109/ISCAS. 2009.5118420]
Bhasker, D.R.; Tripati, M.P.; Senani, R. A Class of three OTA- two capacitor oscillators with non-interacting controls. Int. J. Electron., 1993, 74(03), 459-463.
Chung, W.S.; Kim, H.; Cha, H.W.; Kim, H.J. Triangular/square wave generator with independently controllable frequency and amplitude. IEEE Trans. Instrum. Meas., 2005, 54(1), 105-109.
Srinivasulu, A.; Shaker, C.P. Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans. Circ. Syst., 2014, 13, 145-152.
Shaker, C.P.; Srinivasulu, A. Quadrature oscillator using operational transresistance amplifier. In: Proceedings of the International Conference on Applied Electronics. 2014, pp. 117-120.
Lo, Y.K.; Chien, H.C. Switch controllable OTRA based square/triangular waveform generator. IEEE Trans. Circuits, Syst.- II, 2007, 54, (12), 1110-1114.
Linitha, R.; Srinivasulu, A.; Venkata Reddy, V. A Schmitt trigger based on DDCCTA without any passive components. In: Proceedings of the IEEE International Conference on Communications and Signal Processing, 2015, pp. 1695-1698.
Jaikla, W.; Siripruchyanum, M.; Bajer, J.; Biolek, D. A simple current-mode quadrature oscillator using CDTA. Wuxiandian Gongcheng, 2008, 17(4), 33-40.
Tangsrirat, W. Synthesis of current differencing transconductance amplifier – based current limiters and its applications. Int. J. Circ. Syst. Comput., 2011, 20, 185-206.
Linita, R.; Reddy, V.V.; Srinivasulu, A. An integrator circuit using differential difference current conveyor transconductance amplifier. In: Proceedings of the IEEE International Conference on Signal Processing, Communications and Networking, Chennai, India2017, p. 4.
Sedra, A.; Smith, K.C. Microelectronic Circuits, 5th ed; Oxford University Press: London, U.K., 2004, pp. 105-113.
Patranabis, D.; Ghosh, D.K. Integrators and differentiators with current conveyors. IEEE Trans. Circ. Syst., 1984, 31(6), 567-569.
Lee, J.Y.; Tsao, H.W. True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans. Instrum. Meas., 1992, 41(5), 709-714.
Arbel, A.F.; Goldminz, L. Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process., 1992, 2(3), 243-255.
Nagaria, R.K.; Goswami, A.; Venkateswaran, P.; Sanyal, S.K.; Nandi, R. Voltage controlled integrators/differentiators using current feedback amplifier. In: Proceedings of the International Symposium on Signals, Circuits and Systems, Iasi, Romania2003, Vol. 2, pp. 573-576.
Lee, J.L.; Liu, S.I. Integrator and differentiator with time constant multiplication using current feedback amplifier. Electron. Lett., 2001, 37(6), 331-333.
Liu, S.I.; Hwang, Y.S. Dual-input differentiators and integrators with tunable time constants using current conveyors. IEEE Trans. Instrum. Meas., 1994, 43(4), 650-654.
Minaei, S. Dual-input current-mode integrator and differentiator using single DVCC and grounded passive elements. In: Proceedings of the 12th IEEE Mediterranean Electro technical Conference, 2004, pp. 123-126.
Kumbun, J.; Siripruchyanun, M. MO-CTTA-based electronically controlled current mode square/triangular wave generator. In: Proceedings of the International Conference on Technical Education, 2010, pp. 158-162.
Vijay, V.; Srinivasulu, A. A low power waveform generator using DCCII with grounded capacitor. Int. J. Public Sector Perform. Manage., 2019, 5(2), 134-145.
Vijay, V.; Srinivasulu, A. A novel square wave generator using second generation differential current conveyor. Arab. J. Sci. Eng., 2017, 42(12), 4983-4990.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [133 - 141]
Pages: 9
DOI: 10.2174/1876402911666190527085225

Article Metrics

PDF: 31