Synergistic Effect of Polyalthia longifolia Leaf and Antibiotics against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) by Microscopic Technique

Author(s): Balasupramaniam Kirubakari, Yeng Chen, Sreenivasan Sasidharan*

Journal Name: Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
Formerly Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents

Volume 19 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Polyalthia longifolia is a popular medicinal plant and has been widely used as a traditional remedy for centuries in curing of various ailments. The purpose of this study was conducted to determine the in situ antimicrobial synergistic effects between Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) and ampicillin against MRSA local isolate by using modern microscopy technique.

Methods: Hence, the evaluation of the synergistic activity of PLEAF and ampicillin against MRSA local isolate was conducted with scanning electron microscopy (SEM).

Results: The combinational effect of PLEAF fraction and ampicillin exhibited significant antibacterial activity against MRSA. Bacterial cells observations showed invagination, impaired cell division, extensive wrinkles, cell shrinkage, the appearance of a rougher cell with fibrous matrix and clustered cells which confirmed the synergistic effect of PLEAF and ampicillin against MRSA local isolate by SEM.

Conclusion: Conclusively, the in situ SEM observation proved the synergistic antimicrobial activity between PLEAF fraction and ampicillin to destroy the MRSA resistance bacteria which is an important aspect of PLEAF fraction to be used in the future combinational therapy.

Keywords: Antibacterial agent, combinational therapy, natural products, Polyalthia longifolia, resistant Staphylococcus aureus, scanning electron microscopy.

[1]
Moussaoui, F.; Alaoui, T. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac. J. Trop. Biomed., 2016, 6(1), 32-37.
[http://dx.doi.org/10.1016/j.apjtb.2015.09.024]
[2]
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
[3]
Jagtap, S.D.; Deokule, S.S.; Bhosle, S.V. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. J. Ethnopharmacol., 2006, 107(3), 463-469.
[http://dx.doi.org/10.1016/j.jep.2006.04.002] [PMID: 16713158]
[4]
Sibanda, T.; Okoh, A.I. The challenges of overcoming antibiotic resistance: plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr. J. Biotechnol., 2007, 6(25), 2886-2896.
[5]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[6]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: an emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 1-7.
[7]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[8]
Sasidharan, N.K.; Sreekala, S.R.; Jacob, J.; Nambisan, B. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea. BioMed Res. Int., 2014, 2014, 8.
[http://dx.doi.org/10.1155/2014/561456]
[9]
Haguenau, F.; Hawkes, P.W.; Hutchison, J.L.; Satiat-Jeunemaître, B.; Simon, G.T.; Williams, D.B. Key events in the history of electron microscopy. Microsc. Microanal., 2003, 9(2), 96-138.
[http://dx.doi.org/10.1017/S1431927603030113] [PMID: 12639238]
[10]
Vijayarathna, S.; Oon, C.E.; Chen, Y.; Kanwar, J.R.; Sasidharan, S. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed. Pharmacother., 2017, 89, 499-514.
[http://dx.doi.org/10.1016/j.biopha.2017.02.075] [PMID: 28249252]
[11]
Ghosh, G.; Kar, D.M.; Subudhi, B.B.; Mishra, S.K. Antihyperglycemic and antioxidant activity of stem bark of Polyalthia longifolia var. angustifolia. Der. Pharmacia. Lettre., 2010, 2(2), 206-216.
[12]
Nair, R.; Shukla, V.; Chanda, S. Assessment of Polyalthia longifolia var. pendula for hypoglycemic and antihyperglycemic activity. J. Clin. Diagn. Res., 2007, 3, 116-121.
[13]
Chang, F.R.; Hwang, T.L.; Yang, Y.L.; Li, C.E.; Wu, C.C.; Issa, H.H.; Hsieh, W.B.; Wu, Y.C. Anti-inflammatory and cytotoxic diterpenes from formosan Polyalthia longifolia var. pendula. Planta Med., 2006, 72(14), 1344-1347.
[http://dx.doi.org/10.1055/s-2006-951691] [PMID: 17022008]
[14]
Guédé-Guina, F.; Vangah-Manda, M.; Harouna, D.; Bahi, C. Potencies of Misca, a plant source concentrate against fungi. J. Ethnopharmacol., 1993, 14, 45-53.
[15]
Meite, S.; N’guessan, J.D.; Bahi, C.; Yapi, H.F.; Djaman, A.J.; Guina, F.G. Antidiarrheal activity of the ethyl acetate extract of Morinda morindoides in rats. Trop. J. Pharm. Res., 2009, 8(3), 201-207.
[http://dx.doi.org/10.4314/tjpr.v8i3.44533]
[16]
Borgers, M.; Van de Ven, M.A.; Van Cutsem, J. Structural degeneration of Aspergillus fumigatus after exposure to saperconazole. J. Med. Vet. Mycol., 1989, 27(6), 381-389.
[http://dx.doi.org/10.1080/02681218980000501] [PMID: 2697753]
[17]
Kirubakari, B. Evaluation of antibacterial synergy of Polyalthia longifolia leaf ethyl acetate fraction (PLEAF) with antibiotic ampicillin against methicillin- resistant Staphylococcus aureus (MRSA). MSc Thesis, Universiti Sains Malaysia, Penang, Ma-laysia, 2018.
[18]
Donlan, R.M. Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis., 2001, 33(8), 1387-1392.
[http://dx.doi.org/10.1086/322972] [PMID: 11565080]
[19]
Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Chomnawang, M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules, 2011, 16(8), 6255-6270.
[http://dx.doi.org/10.3390/molecules16086255] [PMID: 21788933]
[20]
Al-Habib, A.; Al-Saleh, E.; Safer, A.M.; Afzal, M. Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J. Toxicol. Sci., 2010, 35(3), 357-364.
[http://dx.doi.org/10.2131/jts.35.357] [PMID: 20519844]
[21]
Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[22]
Smith, K.; Perez, A.; Ramage, G.; Lappin, D.; Gemmell, C.G.; Lang, S. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J. Med. Microbiol., 2008, 57(Pt 8), 1018-1023.
[http://dx.doi.org/10.1099/jmm.0.2008/000968-0] [PMID: 18628505]
[23]
Tsuchiya, H. Biphasic membrane effects of capsaicin, an active component in Capsicum species. J. Ethnopharmacol., 2001, 75(2-3), 295-299.
[http://dx.doi.org/10.1016/S0378-8741(01)00200-8] [PMID: 11297867]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2020
Published on: 22 May, 2019
Page: [323 - 334]
Pages: 12
DOI: 10.2174/1871523018666190522112902

Article Metrics

PDF: 34
HTML: 3