Investigation on the Metabolism of Curcumin and Baicalein in Zebrafish by Liquid Chromatography-tandem Mass Spectrometry Analysis

Author(s): Shi-Jun Yin, Ya-Li Wang, Hua Chen, Guang Hu*, Guo-Can Zheng, Feng-Qing Yang*

Journal Name: Current Pharmaceutical Analysis

Volume 16 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Curcumin (CUR) and baicalein (BAI) are the main active ingredients in Curcuma longa and Scutellaria baicalensis, which are used together in Jiang-Qin-Si-Wu decoction to treat gynecological diseases. On the other hand, zebrafish, as a metabolic model has become more popular, therefore, the metabolism of CUR and BAI in zebrafish is investigated in the present study.

Methods: Zebrafish embryos after hatching 48 hours were divided into four experimental groups. The blank group was exposed to 1 mL of ultra-pure water. Three drug-treated groups were exposed to CUR (8 μM, 1 mL), BAI (8 μM, 1 mL), CUR and BAI (8 μM, 2 mL), respectively. After homogenization, they were analyzed by liquid chromatography-tandem mass spectrometry (LCMS/ MS). The structure of the metabolites was determined by comparing their corresponding mass spectra with those of relevant literature. According to the change of metabolite content, the metabolic effect of curcumin and baicalein was explored.

Results: Five and six metabolites of CUR and BAI in zebrafish were identified by LC-MS/MS, respectively. Their metabolic pathways in zebrafish were glucuronidation and sulfation. Reduction and methylation reactions also occurred for CUR and BAI, respectively. In addition, after combined exposure of both the drugs, CUR reduced the BAI glucuronide metabolites and inhibited the metabolism of BAI in zebrafish, which is consistent with the mammalian metabolism.

Conclusion: Using LC-MS/MS analysis, zebrafish is a feasible model for drug metabolism study. The results of metabolic study indicated that CUR might affect the therapeutic effect of BAI.

Keywords: Zebrafish, LC-MS/MS, curcumin, baicalein, metabolic pathway, metabolic effect.

[1]
Lieschke, G.J.; Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet., 2007, 8(5), 353-367.
[http://dx.doi.org/10.1038/nrg2091] [PMID: 17440532]
[2]
Almeida, D.V.; da Silva Nornberg, B.F.; Geracitano, L.A.; Barros, D.M.; Monserrat, J.M.; Marins, L.F. Induction of phase II enzymes and hsp70 genes by copper sulfate through the electrophile-responsive element (EpRE): insights obtained from a transgenic zebrafish model carrying an orthologous EpRE sequence of mammalian origin. Fish Physiol. Biochem., 2010, 36(3), 347-353.
[http://dx.doi.org/10.1007/s10695-008-9299-x] [PMID: 19116768]
[3]
Thompson, E.D.; Burwinkel, K.E.; Chava, A.K.; Notch, E.G.; Mayer, G.D. Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2010, 152(3), 371-378.
[http://dx.doi.org/10.1016/j.cbpc.2010.06.004] [PMID: 20547244]
[4]
Grunwald, D.J.; Eisen, J.S. Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat. Rev. Genet., 2002, 3(9), 717-724.
[http://dx.doi.org/10.1038/nrg892] [PMID: 12209146]
[5]
Ning, Q.; Wei, Y.J.; Wang, D.D.; Jia, X.B.; Xie, L. Advances in the applicability of zebrafish drug metabolism model. Chin. Tradit. Herbal Drugs, 2015, 46(8), 1231-1236.
[6]
Wei, Y.J.; Wang, C.M.; Zhan, Y. Metabolic study of chrysin in model organism zebrafish. Chung Kuo Yao Hsueh Tsa Chih, 2013, 48, 565-568.
[7]
Wei, Y.; Li, P.; Fan, H.; Sun, E.; Wang, C.; Shu, L.; Liu, W.; Xue, X.; Qian, Q.; Jia, X. Metabolite profiling of four major flavonoids of Herba Epimedii in zebrafish. Molecules, 2012, 17(1), 420-432.
[http://dx.doi.org/10.3390/molecules17010420] [PMID: 22217555]
[8]
Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign-score method. Chem. Cent. J., 2018, 12(1), 82.
[http://dx.doi.org/10.1186/s13065-018-0445-y] [PMID: 30003449]
[9]
Chinnam, N.; Dadi, P.K.; Sabri, S.A.; Ahmad, M.; Kabir, M.A.; Ahmad, Z. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Int. J. Biol. Macromol., 2010, 46(5), 478-486.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.03.009] [PMID: 20346967]
[10]
Shieh, D.E.; Liu, L.T.; Lin, C.C. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res., 2000, 20(5A), 2861-2865.
[PMID: 11062694]
[11]
Woo, K.J.; Lim, J.H.; Suh, S.I.; Kwon, Y.K.; Shin, S.W.; Kim, S.C.; Choi, Y.H.; Park, J.W.; Kwon, T.K. Differential inhibitory effects of baicalein and baicalin on LPS-induced cyclooxygenase-2 expression through inhibition of C/EBPbeta DNA-binding activity. Immunobiology, 2006, 211(5), 359-368.
[http://dx.doi.org/10.1016/j.imbio.2006.02.002] [PMID: 16716805]
[12]
Zhang, Y.; Wang, H.; Liu, Y.; Wang, C.; Wang, J.; Long, C.; Guo, W.; Sun, X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed. Pharmacother., 2018, 102, 1003-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.03.114] [PMID: 29710517]
[13]
Woo, A.Y.; Cheng, C.H.; Waye, M.M. Baicalein protects rat cardiomyocytes from hypoxia/reoxygenation damage via a prooxidant mechanism. Cardiovasc. Res., 2005, 65(1), 244-253.
[http://dx.doi.org/10.1016/j.cardiores.2004.09.027] [PMID: 15621053]
[14]
Xing, J.; Chen, X.; Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci., 2005, 78(2), 140-146.
[http://dx.doi.org/10.1016/j.lfs.2005.04.072] [PMID: 16107266]
[15]
Egan, M.E.; Pearson, M.; Weiner, S.A.; Rajendran, V.; Rubin, D.; Glöckner-Pagel, J.; Canny, S.; Du, K.; Lukacs, G.L.; Caplan, M.J. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science, 2004, 304(5670), 600-602.
[http://dx.doi.org/10.1126/science.1093941] [PMID: 15105504]
[16]
Panahi, Y.; Fazlolahzadeh, O.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Johnston, T.P.; Sahebkar, A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J. Cell. Physiol., 2019, 234(2), 1165-1178.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[17]
Ghosh, S.; Banerjee, S.; Sil, P.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem. Toxicol., 2015, 83, 111-124.
[http://dx.doi.org/10.1016/j.fct.2015.05.022] [PMID: 26066364]
[18]
Olszanecki, R.; Jawień, J.; Gajda, M.; Mateuszuk, L.; Gebska, A.; Korabiowska, M.; Chłopicki, S.; Korbut, R. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J. Physiol. Pharmacol., 2005, 56(4), 627-635.
[PMID: 16391419]
[19]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[20]
Xiao, M.; Jiang, T.; Sun, Q.Y. Effects of curcumin on bone marrow and peripheral blood endothelial progenitor cells in rats with pul- monary fibrosis. Zhongchengyao, 2015, 37, 700-705.
[21]
Huang, J.; Huang, K.; Lan, T.; Xie, X.; Shen, X.; Liu, P.; Huang, H. Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol., 2013, 365(2), 231-240.
[http://dx.doi.org/10.1016/j.mce.2012.10.024] [PMID: 23127801]
[22]
Kunati, S.R.; Yang, S.; William, B.M.; Xu, Y. An LC-MS/MS method for simultaneous determination of curcumin, curcumin glucuronide and curcumin sulfate in a phase II clinical trial. J. Pharm. Biomed. Anal., 2018, 156, 189-198.
[http://dx.doi.org/10.1016/j.jpba.2018.04.034] [PMID: 29727780]
[23]
Fan, S.Z.; Guo, H.; Lin, Z. Determination of baicalin and curcumin in Xianglian Jinhuang ointment by HPLC. Huaxi Yaoxue Zazhi, 2016, 31, 529-530.
[24]
Westemeld, M. The Zebrlmsh Book; Uo Press, 1995, pp. 16-21.
[25]
Lin, Y.; Guo, X.Y.; Wang, Q.F.; Chen, Y.; Che, Y.X.; Che, Q.M. Identification of the metabolites of baicalein in rat serum. J. Pharm. Sci., 2011, 20, 275-281.
[26]
Liu, W.Y.; Yang, X.J.; Feng, F.; Xu, X.Z. Metabolite identification and the development of a simultaneous quantification method for wogonin and wogonin-7-O-glucuronide: application to a distribu- tion study in mice liver. J. Pharm. Sci., 2011, 20, 282-289.
[27]
Wang, Y.; Zhang, Y.; Xiao, J.; Xu, R.; Wang, Q.; Wang, X. Simul- taneous determination of baicalin, baicalein, wogonoside, wogonin, scutellarin, berberine, coptisine, ginsenoside Rb1 and ginsenoside Re of Banxia xiexin decoction in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed. Chromatogr., 2018, 32(2), 1-11.
[http://dx.doi.org/10.1002/bmc.4083]
[28]
Fong, S.Y.; Wong, Y.C.; Zuo, Z. Development of a SPE-LC/MS/MS method for simultaneous quantification of baicalein, wogonin, oroxylin A and their glucuronides baicalin, wogonoside and oroxyloside in rats and its application to brain uptake and plasma pharmacokinetic studies. J. Pharm. Biomed. Anal., 2014, 97, 9-23.
[http://dx.doi.org/10.1016/j.jpba.2014.03.033] [PMID: 24803030]
[29]
Chung, H.J.; Lim, S.; Kim, I.S.; Bu, Y.; Kim, H.; Kim, D.H.; Yoo, H.H. Simultaneous determination of baicalein, baicalin, wogonin, and wogonoside in rat plasma by LC-MS/MS for studying the pharmacokinetics of the standardized extract of Scutellariae Radix. Bull. Korean Chem. Soc., 2012, 33, 177-182.
[http://dx.doi.org/10.5012/bkcs.2012.33.1.177]
[30]
Kim, Y.H.; Jeong, D.W.; Paek, I.B.; Ji, H.Y.; Kim, Y.C.; Sohn, D.H.; Lee, H.S. Liquid chromatography with tandem mass spectrometry for the simultaneous determination of baicalein, baicalin, oroxylin A and wogonin in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 844(2), 261-267.
[http://dx.doi.org/10.1016/j.jchromb.2006.07.021] [PMID: 16893689]
[31]
Feng, J.; Xu, W.; Tao, X.; Wei, H.; Cai, F.; Jiang, B.; Chen, W. Simultaneous determination of baicalin, baicalein, wogonin, berberine, palmatine and jatrorrhizine in rat plasma by liquid chromatography-tandem mass spectrometry and application in pharmacokinetic studies after oral administration of traditional Chinese medicinal preparations containing scutellaria-coptis herb couple. J. Pharm. Biomed. Anal., 2010, 53(3), 591-598.
[http://dx.doi.org/10.1016/j.jpba.2010.04.002] [PMID: 20430560]
[32]
Guo, X.Y.; Yang, L.; Chen, Y.; Wang, Q.F.; Sun, Q.S.; Che, Y.X.; Che, Q.M. Identification of the metabolites of baicalein in human plasma. J. Asian Nat. Prod. Res., 2011, 13(9), 861-868.
[http://dx.doi.org/10.1080/10286020.2011.599321] [PMID: 21830892]
[33]
Pan, M.H.; Huang, T.M.; Lin, J.K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos., 1999, 27(4), 486-494.
[PMID: 10101144]
[34]
Liu, Y.; Siard, M.; Adams, A.; Keowen, M.L.; Miller, T.K.; Garza, F., Jr; Andrews, F.M.; Seeram, N.P. Simultaneous quantification of free curcuminoids and their metabolites in equine plasma by LC-ESI-MS/MS. J. Pharm. Biomed. Anal., 2018, 154, 31-39.
[http://dx.doi.org/10.1016/j.jpba.2018.03.014] [PMID: 29529492]
[35]
Wang, X.M.; Zhang, Q.Z.; Yang, J.; Zhu, R.H.; Zhang, J.; Cai, L.J.; Peng, W.X. Validated HPLC-MS/MS method for simultane- ous determination of curcumin and piperine in human plasma. Trop. Pharm. Res., 2012, 11, 621-629.
[36]
Liu, A.; Lou, H.; Zhao, L.; Fan, P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J. Pharm. Biomed. Anal., 2006, 40(3), 720-727.
[http://dx.doi.org/10.1016/j.jpba.2005.09.032] [PMID: 16316738]
[37]
Tan, A.; Wu, Y.; Wong, M.; Licollari, A.; Bolger, G.; Fanaras, J.C.; Shopp, G.; Helson, L. Use of basic mobile phase to improve chromatography and boost sensitivity for quantifying tetrahydrocurcumin in human plasma by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1028, 86-93.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.010] [PMID: 27327398]
[38]
Fong, Y.K.; Li, C.R.; Wo, S.K.; Wang, S.; Zhou, L.; Zhang, L.; Lin, G.; Zuo, Z. In vitro and in situ evaluation of herb-drug interactions during intestinal metabolism and absorption of baicalein. J. Ethnopharmacol., 2012, 141(2), 742-753.
[http://dx.doi.org/10.1016/j.jep.2011.08.042] [PMID: 21906668]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 8
Year: 2020
Published on: 27 September, 2020
Page: [1052 - 1058]
Pages: 7
DOI: 10.2174/1573412915666190522083850
Price: $65

Article Metrics

PDF: 27
HTML: 1