The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System

Author(s): Robert E. Smith*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 13 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Inflammation is one of the most misunderstood aspects of human health. People have been encouraged to eat foods that have a high antioxidant capacity, and in vitro tests for total antioxidant capacity emerged. They were based on measuring the destruction of oxidized test compounds in direct reactions with the antioxidants in foods. Many dietary supplements arrived in the market. They contained purified antioxidants, such as resveratrol and EGCG that were and still are widely assumed by many to be quite healthy at any dose.

Methods: The literature on inflammation and the Nrf2/ARE antioxidant system was searched systematically. Articles from prestigious, peer-reviewed journals were obtained and read. The information obtained from them was used to write this review article.

Results: Over 150 articles and books were read. The information obtained from them showed that very few dietary antioxidants exert their effects by reacting directly with Reactive Oxygen and Nitrogen Species (RONS). Instead, most of the effective antioxidants activate the endogenous Nrf2/ARE antioxidant system. This helps prevent smoldering inflammation and the diseases that it can cause. However, when overactivated or activated constitutively, the Nrf2/ARE antioxidant system can cause some of these diseases, including many types of multidrug resistant cancer, autoimmune, neurodegenerative and cardiovascular diseases.

Conclusion: Even though green tea, as well as many fruits, vegetables and spices are quite healthy, dietary supplements that deliver much higher doses of antioxidants may not be. People who are diagnosed with cancer and plan to start chemotherapy and/or radiotherapy should probably avoid such supplements. This is because multidrug resistant tumors can hijack and overactivate the Nrf2/ARE antioxidant system.

Keywords: Nrf2/ARE, antioxidants, metformin, ECGC, resveratrol, multidrug resistant cancer, dietary supplements, green tea.

[1]
Walker, G.; Houthoofd, K.; Vanfleteren, J.R.; Gems, D. Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech. Ageing Dev., 2005, 126(9), 929-937.
[http://dx.doi.org/10.1016/j.mad.2005.03.014] [PMID: 15896824]
[2]
Ristow, M.; Zarse, K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol., 2010, 45(6), 410-418.
[http://dx.doi.org/10.1016/j.exger.2010.03.014] [PMID: 20350594]
[3]
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 1956, 11(3), 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[4]
Smith, R.E. Medicinal Chemistry – Fusion of Traditional and Western Medicine, 3rd ed.; Bentham Science: Sharjah, U.A.E., 2015.
[5]
Tian, R.; Ding, Y.; Peng, Y-Y.; Lu, N. Inhibition of myeloperoxidase- and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by (−)-epigallocatechin gallate. J. Agric. Food Chem., 2017, 65(15), 3198-3203.
[http://dx.doi.org/10.1021/acs.jafc.7b00631] [PMID: 28361543]
[6]
Halliwell, B. The antioxidant paradox: less paradoxical now? Br. J. Clin. Pharmacol., 2013, 75(3), 637-644.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04272.x] [PMID: 22420826]
[7]
Smith, R.E. Systems Thinking in Medicine and New Drug Discovery; Cambridge Scholars Publishing: Newcastle upon Tyne, Vol. 2, 2018.
[8]
Powers, S.K.; Radak, Z.; Ji, L.L. Exercise-induced oxidative stress: past, present and future. J. Physiol., 2016, 594(18), 5081-5092.
[http://dx.doi.org/10.1113/JP270646] [PMID: 26893258]
[9]
Sthijns, M.M.J.P.E.; Weseler, A.R.; Bast, A.; Haenen, G.R.M.M. Time in redox adaptation process: from evolution to hormesis. Int. J. Mol. Sci., 2016, 17(10), 1649.
[http://dx.doi.org/10.3390/ijms17101649] [PMID: 27690013]
[10]
Ormsbee, M.J.; Prado, C.M.; Ilich, J.Z.; Purcell, S.; Siervo, M.; Folsom, A.; Panton, L. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J. Cachexia Sarcopenia Muscle, 2014, 5(3), 183-192.
[http://dx.doi.org/10.1007/s13539-014-0146-x] [PMID: 24740742]
[11]
Cominacini, L.; Mozzini, C.; Garbin, U.; Pasini, A.; Stranieri, C.; Solani, E.; Vallerio, P.; Tinelli, I.A.; Fratta Pasini, A. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med., 2015, 88(Pt B), 233-242.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.027] [PMID: 26051167]
[12]
Tarumoto, T.; Nagai, T.; Ohmine, K.; Miyoshi, T.; Nakamura, M.; Kondo, T.; Mitsugi, K.; Nakano, S.; Muroi, K.; Komatsu, N.; Ozawa, K. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp. Hematol., 2004, 32(4), 375-381.
[http://dx.doi.org/10.1016/j.exphem.2004.01.007] [PMID: 15050748]
[13]
Lee, M-J.; Maliakal, P.; Chen, L.; Meng, X.; Bondoc, F.Y.; Prabhu, S.; Lambert, G.; Mohr, S.; Yang, C.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol. Biomarkers Prev., 2002, 11(10 Pt 1), 1025-1032.
[PMID: 12376503]
[14]
Smith, A.; Giunta, B.; Bickford, P.C.; Fountain, M.; Tan, J.; Shytle, R.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharm., 2010, 389(1-2), 207-212.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.012] [PMID: 20083179]
[15]
Zhang, T.; Kimura, Y.; Jiang, S.; Harada, K.; Yamashita, Y.; Ashida, H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch. Biochem. Biophys., 2014, 557, 36-46.
[http://dx.doi.org/10.1016/j.abb.2014.05.023] [PMID: 24914470]
[16]
Zhu, J.; Wang, H.; Chen, F.; Fu, J.; Xu, Y.; Hou, Y.; Kou, H.H.; Zhai, C.; Nelson, M.B.; Zhang, Q.; Andersen, M.E.; Pi, J. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic. Biol. Med., 2016, 99, 544-556.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.09.010] [PMID: 27634172]
[17]
Kim, S.R.; Ha, Y.M.; Kim, Y.M.; Park, E.J.; Kim, J.W.; Park, S.W.; Kim, H.J.; Chung, H.T.; Chang, K.C. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem. Pharmacol., 2015, 95(4), 279-289.
[http://dx.doi.org/10.1016/j.bcp.2015.04.007] [PMID: 25896849]
[18]
Wagner, A.E.; Boesch-Saadatmandi, C.; Breckwoldt, D.; Schrader, C.; Schmelzer, C.; Döring, F.; Hashida, K.; Hori, O.; Matsugo, S.; Rimbach, G. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2. BMC Complement. Altern. Med., 2011, 11, 1.
[http://dx.doi.org/10.1186/1472-6882-11-1] [PMID: 21199573]
[19]
Blanchard, J.; Tozer, T.N.; Rowland, M. Pharmacokinetic perspectives on megadoses of ascorbic acid. Am. J. Clin. Nutr., 1997, 66(5), 1165-1171.
[http://dx.doi.org/10.1093/ajcn/66.5.1165] [PMID: 9356534]
[20]
Duconge, J.; Miranda-Massari, J.R.; Gonzalez, M.J.; Jackson, J.A.; Warnock, W.; Riordan, N.H. Pharmacokinetics of vitamin C: insights into the oral and intravenous administration of ascorbate. P. R. Health Sci. J., 2008, 27(1), 7-19.
[PMID: 18450228]
[21]
Del Rio, D.; Stewart, A.J.; Mullen, W.; Burns, J.; Lean, M.E.J.; Brighenti, F.; Crozier, A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem., 2004, 52(10), 2807-2815.
[http://dx.doi.org/10.1021/jf0354848] [PMID: 15137818]
[22]
Scapagnini, G.; Vasto, S.; Abraham, N.G.; Caruso, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol., 2011, 44(2), 192-201.
[http://dx.doi.org/10.1007/s12035-011-8181-5] [PMID: 21499987]
[23]
Kode, A.; Rajendrasozhan, S.; Caito, S.; Yang, S-R.; Megson, I-L.; Rahman, I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 294(3), L478-L488.
[http://dx.doi.org/10.1152/ajplung.00361.2007] [PMID: 18162601]
[24]
Ajit, D.; Simonyi, A.; Li, R.; Chen, Z.; Hannink, M. Phytochemicals and botanical extracts regulate NF-kB and Nrf2/ARE. Neurochem. Int., 2016, 97, 49-56.
[http://dx.doi.org/10.1016/j.neuint.2016.05.004] [PMID: 27166148]
[25]
Speciale, A.; Anwar, S.; Canali, R.; Chirafisi, J.; Saija, A.; Virgili, F.; Cimino, F. Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Mol. Nutr. Food Res., 2013, 57(11), 1979-1987.
[http://dx.doi.org/10.1002/mnfr.201300102] [PMID: 23901008]
[26]
Cheng, Y-T.; Wu, C-H.; Ho, C-Y.; Yen, G.C. Catechin protects against ketoprofen-induced oxidative damage of the gastric mucosa by up-regulating Nrf2 in vitro and in vivo. J. Nutr. Biochem., 2013, 24(2), 475-483.
[http://dx.doi.org/10.1016/j.jnutbio.2012.01.010] [PMID: 22704780]
[27]
Kumar, H.; Kim, I-S.; More, S.V.; Kim, B-W.; Choi, D-K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep., 2014, 31(1), 109-139.
[http://dx.doi.org/10.1039/C3NP70065H] [PMID: 24292194]
[28]
Huang, C-S.; Lii, C-K.; Lin, A.H.; Yeh, Y-W.; Yao, H-T.; Li, C-C.; Wang, T-S.; Chen, H-W. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol., 2013, 87(1), 167-178.
[http://dx.doi.org/10.1007/s00204-012-0913-4] [PMID: 22864849]
[29]
Ding, Y.; Zhang, B.; Zhou, K.; Chen, M.; Wang, M.; Jia, Y.; Song, Y.; Li, Y.; Wen, A. Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int. J. Cardiol., 2014, 175(3), 508-514.
[http://dx.doi.org/10.1016/j.ijcard.2014.06.045] [PMID: 25017906]
[30]
Li, B.; Lee, D-S.; Kang, Y.; Yao, N-Q.; An, R-B.; Kim, Y-C. Protective effect of ganodermanondiol isolated from the Lingzhi mushroom against tert-butyl hydroperoxide-induced hepatotoxicity through Nrf2-mediated antioxidant enzymes. Food Chem. Toxicol., 2013, 53, 317-324.
[http://dx.doi.org/10.1016/j.fct.2012.12.016] [PMID: 23266269]
[31]
Ji, S.; Li, Z.; Song, W.; Wang, Y.; Liang, W.; Li, K.; Tang, S.; Wang, Q.; Qiao, X.; Zhou, D.; Yu, S.; Ye, M. Bioactive constituents of Glycyrrhiza uralensis (licorice): Discovery of the effective components of a traditional herbal medicine. J. Nat. Prod., 2016, 79(2), 281-292.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00877] [PMID: 26841168]
[32]
Boettler, U.; Volz, N.; Pahlke, G.; Teller, N.; Kotyczka, C.; Somoza, V.; Stiebitz, H.; Bytof, G.; Lantz, I.; Lang, R.; Hofmann, T.; Marko, D. Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Mol. Nutr. Food Res., 2011, 55(5), 798-802.
[http://dx.doi.org/10.1002/mnfr.201100115] [PMID: 21448860]
[33]
Ma, J-Q.; Ding, J.; Zhang, L.; Liu, C.M. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway. Clin. Res. Hepatol. Gastroenterol., 2015, 39(2), 188-197.
[http://dx.doi.org/10.1016/j.clinre.2014.09.007] [PMID: 25459994]
[34]
Fetoni, A.R.; Paciello, F.; Rolesi, R.; Eramo, S.L.M.; Mancuso, C.; Troiani, D.; Paludetti, G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic. Biol. Med., 2015, 85, 269-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.021] [PMID: 25936352]
[35]
Varì, R.; D’Archivio, M.; Filesi, C.; Carotenuto, S.; Scazzocchio, B.; Santangelo, C.; Giovannini, C.; Masella, R. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem., 2011, 22(5), 409-417.
[http://dx.doi.org/10.1016/j.jnutbio.2010.03.008] [PMID: 20621462]
[36]
Kropat, C.; Mueller, D.; Boettler, U.; Zimmermann, K.; Heiss, E.H.; Dirsch, V.M.; Rogoll, D.; Melcher, R.; Richling, E.; Marko, D. Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo. Mol. Nutr. Food Res., 2013, 57(3), 545-550.
[http://dx.doi.org/10.1002/mnfr.201200504] [PMID: 23349102]
[37]
Yeh, C.T.; Yen, G.C. Induction of hepatic antioxidant enzymes by phenolic acids in rats is accompanied by increased levels of multidrug resistance-associated protein 3 mRNA expression. J. Nutr., 2006, 136(1), 11-15.
[http://dx.doi.org/10.1093/jn/136.1.11] [PMID: 16365051]
[38]
Ma, Z.C.; Hong, Q.; Wang, Y.G.; Liang, Q.D.; Tan, H.L.; Xiao, C.R.; Tang, X.L.; Shao, S.; Zhou, S.S.; Gao, Y. Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov. Ther., 2011, 5(6), 299-305.
[http://dx.doi.org/10.5582/ddt.2011.v5.6.299] [PMID: 22466441]
[39]
Kweon, M.H.; Adhami, V.M.; Lee, J.S.; Mukhtar, H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem., 2006, 281(44), 33761-33772.
[http://dx.doi.org/10.1074/jbc.M604748200] [PMID: 16950787]
[40]
Ma, Z.C.; Hong, Q.; Wang, Y.G.; Tan, H.L.; Xiao, C.R.; Liang, Q.D.; Zhang, B.L.; Gao, Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol. Pharm. Bull., 2010, 33(1), 29-34.
[http://dx.doi.org/10.1248/bpb.33.29] [PMID: 20045931]
[41]
Gao, A.M.; Ke, Z.P.; Wang, J.N.; Yang, J.Y.; Chen, S.Y.; Chen, H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis, 2013, 34(8), 1806-1814.
[http://dx.doi.org/10.1093/carcin/bgt108] [PMID: 23563091]
[42]
Wang, X.J.; Hayes, J.D.; Henderson, C.J.; Wolf, C.R. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19589-19594.
[http://dx.doi.org/10.1073/pnas.0709483104] [PMID: 18048326]
[43]
Ren, D.; Villeneuve, N.F.; Jiang, T.; Wu, T.; Lau, A.; Toppin, H.A.; Zhang, D.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1433-1438.
[http://dx.doi.org/10.1073/pnas.1014275108] [PMID: 21205897]
[44]
Arlt, A.; Sebens, S.; Krebs, S.; Geismann, C.; Grossmann, M.; Kruse, M-L.; Schreiber, S.; Schäfer, H. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene, 2013, 32(40), 4825-4835.
[http://dx.doi.org/10.1038/onc.2012.493] [PMID: 23108405]
[45]
Limonciel, A.; Jennings, P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel), 2014, 6(1), 371-379.
[http://dx.doi.org/10.3390/toxins6010371] [PMID: 24448208]
[46]
Lim, J.; Lee, S.H.; Cho, S.; Lee, I-S.; Kang, B.Y.; Choi, H.J. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells, 2013, 36(4), 340-346.
[http://dx.doi.org/10.1007/s10059-013-0123-9] [PMID: 24046186]
[47]
Smith, R.E. Systems Thinking in Medicine and New Drug Discovery; Cambridge Scholars Publishing: Newcastle upon Tyne, Vol. 1, 2018.
[48]
Shaffer, P.L.; Jivan, A.; Dollins, D.E.; Claessens, F.; Gewirth, D.T. Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 4758-4763.
[http://dx.doi.org/10.1073/pnas.0401123101] [PMID: 15037741]
[49]
Gañán-Gómez, I.; Wei, Y.; Yang, H.; Boyano-Adánez, M.C.; García-Manero, G. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med., 2013, 65, 750-764.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.041] [PMID: 23820265]
[50]
Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med., 2015, 88(Pt B), 108-146.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.021] [PMID: 26122708]
[51]
Chapple, S.J.; Siow, R.C.M.; Mann, G.E. Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int. J. Biochem. Cell Biol., 2012, 44(8), 1315-1320.
[http://dx.doi.org/10.1016/j.biocel.2012.04.021] [PMID: 22575091]
[52]
Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci., 2014, 39(4), 199-218.
[http://dx.doi.org/10.1016/j.tibs.2014.02.002] [PMID: 24647116]
[53]
Priestley, J.R.C.; Kautenburg, K.E.; Casati, M.C.; Endres, B.T.; Geurts, A.M.; Lombard, J.H. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(4), H478-H487.
[http://dx.doi.org/10.1152/ajpheart.00586.2015] [PMID: 26637559]
[54]
Brigelius-Flohé, R.; Flohé, L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal., 2011, 15(8), 2335-2381.
[http://dx.doi.org/10.1089/ars.2010.3534] [PMID: 21194351]
[55]
Matzinger, M.; Fischhuber, K.; Pölöske, D.; Mechtler, K.; Heiss, E.H. AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol., 2020, 29101393
[http://dx.doi.org/10.1016/j.redox.2019.101393] [PMID: 31805502]
[56]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2020, 34(1), 11-19.
[http://dx.doi.org/10.1111/fcp.12498] [PMID: 31283051]
[57]
Chan, J.Y.H.; Chan, S.H.H. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: A lesson learnt from DJ-1. Pharmacol. Ther., 2015, 156, 69-74.
[http://dx.doi.org/10.1016/j.pharmthera.2015.09.005] [PMID: 26432617]
[58]
Wakabayashi, N.; Chartoumpekis, D.V.; Kensler, T.W. Crosstalk between Nrf2 and Notch signaling. Free Radic. Biol. Med., 2015, 88(Pt B), 158-167.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.017] [PMID: 26003520]
[59]
Silva-Palacios, A.; Königsberg, M.; Zazueta, C. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases? Ageing Res. Rev., 2016, 26, 81-95.
[http://dx.doi.org/10.1016/j.arr.2015.12.005] [PMID: 26732035]
[60]
Strom, J. A critical role of Nrf2 in protecting myocytes against oxidative stress and ischemic injury. Ph.D. Thesis, University of Arizona, 2014.
[61]
McSweeney, S.R.; Warabi, E.; Siow, R.C.M. Nrf2 as an endothelial mechanosensitive transcription factor going with the flow. Hypertension, 2016, 67(1), 20-29.
[http://dx.doi.org/10.1161/hypertensionaha.115.06146] [PMID: 26597822]
[62]
Piantadosi, C.A.; Carraway, M.S.; Babiker, A.; Suliman, H.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res., 2008, 103(11), 1232-1240.
[http://dx.doi.org/10.1161/01.RES.0000338597.71702.ad] [PMID: 18845810]
[63]
Strom, J.; Xu, B.; Tian, X.; Chen, Q.M. Nrf2 protects mitochondrial decay by oxidative stress. FASEB J., 2016, 30(1), 66-80.
[http://dx.doi.org/10.1096/fj.14-268904] [PMID: 26340923]
[64]
Dinkova-Kostova, A.T.; Abramov, A.Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med., 2015, 88(Pt B), 179-188.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.036] [PMID: 25975984]
[65]
Diano, S.; Horvath, T.L. Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol. Med., 2012, 18(1), 52-58.
[http://dx.doi.org/10.1016/j.molmed.2011.08.003] [PMID: 21917523]
[66]
Dhamrait, S.S.; Maubaret, C.; Pedersen-Bjergaard, U.; Brull, D.J.; Gohlke, P.; Payne, J.R.; World, M.; Thorsteinsson, B.; Humphries, S.E.; Montgomery, H.E. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. Inside Cell, 2016, 1(1), 70-81.
[http://dx.doi.org/10.1002/bies.201670909] [PMID: 27347560]
[67]
Busiello, R.A.; Savarese, S.; Lombardi, A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol., 2015, 6, 36.
[http://dx.doi.org/10.3389/fphys.2015.00036] [PMID: 25713540]
[68]
Anedda, A.; López-Bernardo, E.; Acosta-Iborra, B.; Saadeh Suleiman, M.; Landázuri, M.O.; Cadenas, S. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med., 2013, 61, 395-407.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.007] [PMID: 23597505]
[69]
Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 721-733.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.010] [PMID: 29499228]
[70]
Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell. Longev., 2013, 2013104308
[http://dx.doi.org/10.1155/2013/104308] [PMID: 23691261]
[71]
Grossman, R.; Ram, Z. The dark side of Nrf2. World Neurosurg., 2013, 80(3-4), 284-286.
[http://dx.doi.org/10.1016/j.wneu.2011.09.055] [PMID: 23246629]
[72]
Narasimhan, M.; Rajasekaran, N.S. Reductive potential - a savior turns stressor in protein aggregation cardiomyopathy. Biochim. Biophys. Acta, 2015, 1852(1), 53-60.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.010] [PMID: 25446995]
[73]
Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[74]
Chen, J.; Zhang, Z.; Cai, L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab. J., 2014, 38(5), 337-345.
[http://dx.doi.org/10.4093/dmj.2014.38.5.337] [PMID: 25349820]
[75]
Kannan, S.; Muthusamy, V.R.; Whitehead, K.J.; Wang, L.; Gomes, A.V.; Litwin, S.E.; Kensler, T.W.; Abel, E.D.; Hoidal, J.R.; Rajasekaran, N.S. Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy. Cardiovasc. Res., 2013, 100(1), 63-73.
[http://dx.doi.org/10.1093/cvr/cvt150] [PMID: 23761402]
[76]
Sag, C.M.; Santos, C.X.C.; Shah, A.M. Redox regulation of cardiac hypertrophy. J. Mol. Cell. Cardiol., 2014, 73, 103-111.
[http://dx.doi.org/10.1016/j.yjmcc.2014.02.002] [PMID: 24530760]
[77]
Eggler, A.L.; Gay, K.A.; Mesecar, A.D. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol. Nutr. Food Res., 2008, 52(Suppl. 1), S84-S94.
[http://dx.doi.org/10.1002/mnfr.200700249] [PMID: 18435489]
[78]
Surh, Y-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[79]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D-X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S-F.; Xu, K. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4), 843.
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[80]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[81]
Paroni, R.; Terraneo, L.; Bonomini, F.; Finati, E.; Virgili, E.; Bianciardi, P.; Favero, G.; Fraschini, F.; Reiter, R.J.; Rezzani, R.; Samaja, M. Antitumour activity of melatonin in a mouse model of human prostate cancer: relationship with hypoxia signalling. J. Pineal Res., 2014, 57(1), 43-52.
[http://dx.doi.org/10.1111/jpi.12142] [PMID: 24786921]
[82]
Cutando, A.; López-Valverde, A.; Arias-Santiago, S.; DE Vicente, J.; DE Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753.
[PMID: 22753734]
[83]
Chuffa, L.G.A.; Reiter, R.J.; Lupi, L.A. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis, 2017, 38(10), 945-952.
[http://dx.doi.org/10.1093/carcin/bgx054] [PMID: 28575150]
[84]
Nooshinfar, E.; Safaroghli-Azar, A.; Bashash, D.; Akbari, M.E. Melatonin, an inhibitory agent in breast cancer. Breast Cancer, 2017, 24(1), 42-51.
[http://dx.doi.org/10.1007/s12282-016-0690-7] [PMID: 27017208]
[85]
Vriend, J.; Reiter, R.J. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol., 2015, 401, 213-220.
[http://dx.doi.org/10.1016/j.mce.2014.12.013] [PMID: 25528518]
[86]
Sporn, M.B.; Liby, K.T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer, 2012, 12(8), 564-571.
[http://dx.doi.org/10.1038/nrc3278] [PMID: 22810811]
[87]
Pandey, P.; Singh, A.K.; Singh, M.; Tewari, M.; Shukla, H.S.; Gambhir, I.S. The see-saw of Keap1-Nrf2 pathway in cancer. Crit. Rev. Oncol. Hematol., 2017, 116, 89-98.
[http://dx.doi.org/10.1016/j.critrevonc.2017.02.006] [PMID: 28693803]
[88]
Menegon, S.; Columbano, A.; Giordano, S. The dual roles of NRF2 in cancer. Trends Mol. Med., 2016, 22(7), 578-593.
[http://dx.doi.org/10.1016/j.molmed.2016.05.002] [PMID: 27263465]
[89]
Chio, I.I.C.; Jafarnejad, S.M.; Ponz-Sarvise, M. Park. Y.; Rivera. K.; Palm, W.; Wilson, J.; Sangar V.; Hao, Y. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 2016, 166, 963-976.
[http://dx.doi.org/10.1016/j.cell.2016.06.056] [PMID: 27477511]
[90]
Bao, L.; Wu, J.; Dodson, M.; Rojo de la Vega, E.M.; Ning, Y.; Zhang, Z.; Yao, M.; Zhang, D.D.; Xu, C.; Yi, X. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells. Mol. Carcinog., 2017, 56(6), 1543-1553.
[http://dx.doi.org/10.1002/mc.22615] [PMID: 28112439]
[91]
Leinonen, H.M.; Kansanen, E.; Pölönen, P.; Heinäniemi, M.; Levonen, A.L. Dysregulation of the Keap1-Nrf2 pathway in cancer. Biochem. Soc. Trans., 2015, 43(4), 645-649.
[http://dx.doi.org/10.1042/BST20150048] [PMID: 26551706]
[92]
Joshi, N.; Biswas, J.; Nath, C.; Singh, S. Promising role of melatonin as neuroprotectant in neurodegenerative pathology. Mol. Neurobiol., 2015, 52(1), 330-340.
[http://dx.doi.org/10.1007/s12035-014-8865-8] [PMID: 25159482]
[93]
Agorastos, A.; Linthorst, A.C.E. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J. Pineal Res., 2016, 61(1), 3-26.
[http://dx.doi.org/10.1111/jpi.12330] [PMID: 27061919]
[94]
Ding, K.; Wang, H.; Xu, J.; Li, T.; Zhang, L.; Ding, Y.; Zhu, L.; He, J.; Zhou, M. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med., 2014, 73, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.031] [PMID: 24810171]
[95]
Martín-Hernández, D.; Bris, A.G.; MacDowell, K.S.; García-Bueno, B.; Madrigal, J.L.M.; Leza, J.C.; Caso, J.R. Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats. Neuropharmacology, 2016, 103, 79-91.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.029] [PMID: 26686388]
[96]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[97]
Kamal, A.; Nekkanti, S.; Shankaraiah, N.; Sathish, M. Future of drug discovery. Drug Resistance in Bacteria, Fungi, Malaria, and Cancer; Arora, G.; Andaleeb, S.; Chandra, V., Eds.; Springer International Publishing: Cham, Switzerland, 2017, 609-629.
[http://dx.doi.org/10.1007/978-3-319-48683-3_27]
[98]
Bromage, D.I.; Yellon, D.M. The pleiotropic effects of metformin: time for prospective studies. Cardiovasc. Diabetol., 2015, 14, 109.
[http://dx.doi.org/10.1186/s12933-015-0273-5] [PMID: 26271457]
[99]
de Kreutzenberg, S.V.; Ceolotto, G.; Cattelan, A.; Pagnin, E.; Mazzucato, M.; Garagnani, P.; Borelli, V.; Bacalini, M.G.; Franceschi, C.; Fadini, G.P.; Avogaro, A. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis., 2015, 25(7), 686-693.
[http://dx.doi.org/10.1016/j.numecd.2015.03.007] [PMID: 25921843]
[100]
Wu, L.; Zhou, B.; Oshiro-Rapley, N.; Li, M.; Paulo, J.A.; Webster, C.M.; Mou, F.; Kacergis, M.C.; Talkowski, M.E.; Carr, C.E.; Gygi, S.P.; Zheng, B.; Soukas, A.A. kacergis, M.C.; Talkowski, M.E.; Carr, C.E.; Gygi, S.P.; Zhen, B., Soukas, A.A. An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell, 2016, 167(7), 1705-1718.e13.
[http://dx.doi.org/10.1016/j.cell.2016.11.055] [PMID: 27984722]
[101]
Barzilai, N.; Crandall, J.P.; Kritchevsky, S.B.; Espeland, M.A. Metformin as a tool to target aging. Cell Metab., 2016, 23(6), 1060-1065.
[http://dx.doi.org/10.1016/j.cmet.2016.05.011] [PMID: 27304507]
[102]
Cuyàs, E.; Fernández-Arroyo, S.; Joven, J.; Menendez, J.A. Metformin targets histone acetylation in cancer-prone epithelial cells. Cell Cycle, 2016, 15(24), 3355-3361.
[http://dx.doi.org/10.1080/15384101.2016.1249547] [PMID: 27792453]
[103]
Linton, R. AMPK and aging., 2015. Available at: http://www.lifeextension.com/magazine/2015/11/ampk-andaging/page-01
[104]
Wang, C-P.; Lorenzo, C.; Habib, S.L.; Jo, B.; Espinoza, S.E. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J. Diabetes Complications, 2017, 31(4), 679-686.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.01.013] [PMID: 28190681]
[105]
Clark, W.R. A Means to an End: The Biological Basis of Aging and Health; Oxford University Press: Oxford, 2002, pp. 3-20.
[106]
Winder, W.W.; Hardie, D.G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol., 1999, 277(1), E1-E10.
[PMID: 10409121]
[107]
U.S. National Institutes of Health. Metformin in Longevity Study (MILES). ClinicalTirals.gov, 2017. Available at: https://clinicaltrials.gov/ct2/show/NCT02432287


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 13
Year: 2020
Published on: 25 April, 2020
Page: [2077 - 2094]
Pages: 18
DOI: 10.2174/0929867326666190517113533
Price: $65

Article Metrics

PDF: 37
HTML: 2
EPUB: 1