Recent Advances in Water Treatment Using Graphene-based Materials

Author(s): Nader Ghaffari Khaligh*, Mohd Rafie Johan.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

A variety of processes were reported for efficient removing of heavy metal from wastewater, including but not limited to ion exchange, reverse osmosis, membrane filtration, flotation, coagulation, chemical precipitation, solvent extraction, electrochemical treatments, evaporation, oxidation, adsorption, and biosorption. Among the aforementioned techniques, adsorption/ion exchange has been known as a most important method for removing heavy metal ions and organic pollutants due to great removal performance, simple and easy process, cost-effectiveness and the considerable choice of adsorbent materials.

Nanotechnology and its applications have been developed in most branches of science and technology. Extensive studies have been conducted to remove heavy metal ions from wastewater by preparation and applications of various nanomaterials. Nanomaterials offer advantages in comparison to other materials including an extremely high specific surface area, low-temperature modification, short intraparticle diffusion distance, numerous associated sorption sites, tunable surface chemistry, and pore size. In order to evaluate an adsorbent, two key parameters are: the adsorption capacity and the desorption property. The adsorption parameters including the absorbent loading, pH and temperature, concentration of heavy metal ion, ionic strength, and competition among metal ions are often studied and optimized.

Several reviews have been published on the application of Graphene (G), Graphene Oxide (GO) in water treatment. In this minireview, we attempted to summarize the recent research advances in water treatment and remediation process by graphene-based materials and provide intensive knowledge of the removal of pollutants in batch and flow systems. Finally, future applicability perspectives are offered to encourage more interesting developments in this promising field. This minireview does not include patent literature.

Keywords: Graphene oxide, graphene, hydrogel, reduced graphene oxide, water treatment, water pollution.

[1]
The Millennium Development Goals Report. United Nations; New York, 2008. Available at. https://www.un.org/millenniumgoals/2008highlevel/pdf/newsroom/mdg%20reports/MDG_Report_2008_ENGLISH.pdf
[2]
Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res., 2010, 44(10), 2997-3027.
[http://dx.doi.org/10.1016/j.watres.2010.02.039] [PMID: 20378145]
[3]
Zeng, G.M.; Li, X.; Huang, J.H.; Zhang, C.; Zhou, C.F.; Niu, J.; Shi, L.J.; He, S.B.; Li, F. Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J. Hazard. Mater., 2011, 185(2-3), 1304-1310.
[http://dx.doi.org/10.1016/j.jhazmat.2010.10.046] [PMID: 21071142]
[4]
Zeng, G.; Chen, M.; Zeng, Z. Shale gas: Surface water also at risk. Nature, 2013, 499(7457), 154.
[http://dx.doi.org/10.1038/499154c] [PMID: 23846647]
[5]
Deng, J.H.; Zhang, X.R.; Zeng, G.M.; Gong, J.L.; Niu, Q.Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J., 2013, 226, 189-200.
[http://dx.doi.org/10.1016/j.cej.2013.04.045]
[6]
Zeng, G.; Chen, M.; Zeng, Z. Risks of neonicotinoid pesticides. Science, 2013, 340(6139), 1403.
[http://dx.doi.org/10.1126/science.340.6139.1403-a] [PMID: 23788781]
[7]
Chen, G.; Guan, S.; Zeng, G.; Li, X.; Chen, A.; Shang, C.; Zhou, Y.; Li, H.; He, J. Cadmium removal and 2,4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Appl. Microbiol. Biotechnol., 2013, 97(7), 3149-3157.
[http://dx.doi.org/10.1007/s00253-012-4121-1] [PMID: 22569639]
[8]
Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z. Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J., 2012, 203, 423-431.
[http://dx.doi.org/10.1016/j.cej.2012.07.048]
[9]
Chen, H.; Dai, G.; Zhao, J.; Zhong, A.; Wu, J.; Yan, H. Removal of copper(II) ions by a biosorbent--cinnamomum camphora leaves powder. J. Hazard. Mater., 2010, 177(1-3), 228-236.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.022] [PMID: 20022692]
[10]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[11]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[12]
Wang, Y.H.; Lin, S.H.; Juang, R.S. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J. Hazard. Mater., 2003, 102(2-3), 291-302.
[http://dx.doi.org/10.1016/S0304-3894(03)00218-8] [PMID: 12972244]
[13]
Ali, I. New generation adsorbents for water treatment. Chem. Rev., 2012, 112(10), 5073-5091.
[http://dx.doi.org/10.1021/cr300133d] [PMID: 22731247]
[14]
Kurniawan, T.A.; Chan, G.Y.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J., 2006, 118, 83-98.
[http://dx.doi.org/10.1016/j.cej.2006.01.015]
[15]
Kaur, A.; Gupta, U. A review on applications of nanoparticles for the preconcentration of environmental pollutants. J. Mater. Chem., 2009, 19, 8279-8289.
[http://dx.doi.org/10.1039/b901933b]
[16]
Savage, N.; Diallo, M.S. Nano materials and water purification: Opportunities and challenges. J. Nanopart. Res., 2005, 7, 331-342.
[http://dx.doi.org/10.1007/s11051-005-7523-5]
[17]
Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nano materials for environmental remediation. Energy Environ. Sci., 2012, 5, 8075-8109.
[http://dx.doi.org/10.1039/c2ee21818f]
[18]
Ju-Nam, Y.; Lead, J.R. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ., 2008, 400(1-3), 396-414.
[http://dx.doi.org/10.1016/j.scitotenv.2008.06.042] [PMID: 18715626]
[19]
Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47(12), 3931-3946.
[http://dx.doi.org/10.1016/j.watres.2012.09.058] [PMID: 23571110]
[20]
Chen, W.; Duan, L.; Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol., 2007, 41(24), 8295-8300.
[http://dx.doi.org/10.1021/es071230h] [PMID: 18200854]
[21]
Jiang, Y.; Biswas, P.; Fortner, J.D. A review of recent developments in graphene-enabled membranes for water treatment. Environ. Sci. Water Res. Technol., 2016, 2, 915-922.
[http://dx.doi.org/10.1039/C6EW00187D]
[22]
Gandhi, M.R.; Vasudevan, S.; Shibayama, A.; Yamada, M. Graphene and graphene-based composites: A rising star in water purification - A comprehensive overview. ChemistrySelect, 2016, 1, 4358-4385.
[http://dx.doi.org/10.1002/slct.201600693]
[23]
Nupearachchi, C.N.; Mahatantila, K.; Vithanage, M. Application of graphene for decontamination of water; implications for sorptive removal. Groundwater Sustain. Develop., 2017, 5, 206-215.
[http://dx.doi.org/10.1016/j.gsd.2017.06.006]
[24]
Ma, J.; Ping, D.; Dong, X. Recent developments of graphene oxide-based membranes: A review. Membranes (Basel), 2017, 7(3), 52.
[http://dx.doi.org/10.3390/membranes7030052] [PMID: 28895877]
[25]
Griggs, C.S.; Medina, V.F. Graphene and graphene oxide membranes for water treatment.In: AccessScience; New York McGraw-Hill Education, 2016.
[26]
Kammler, H.K.; Beaucage, G.; Mueller, R.; Pratsinis, S.E. Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir, 2004, 20, 1915-1921.
[http://dx.doi.org/10.1021/la030155v]
[27]
Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems - A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett., 2012, 521(C), 91-97.
[http://dx.doi.org/10.1016/j.cplett.2011.11.049] [PMID: 22347721]
[28]
Slavov, L.; Abrashev, M.V.; Merodiiska, T.; Gelev, C.; Vandenberghe, R.E.; Markovadeneva, I.; Nedkov, I. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J. Magn. Magn. Mater., 2010, 322, 1904-1911.
[http://dx.doi.org/10.1016/j.jmmm.2010.01.005]
[29]
Polikarpov, M.; Cherepanov, V.; Chuev, M.; Shishkov, S.; Yakimov, S. Mössbauer spectra of hematite and magnetite nanoparticles in polymer composites. J. Phys. Conf. Ser., 2010, 217 012114
[http://dx.doi.org/10.1088/1742-6596/217/1/012114]
[30]
Mahmoudi, M.; Simchi, A.; Imani, M.; Milani, A.S.; Stroeve, P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B, 2008, 112(46), 14470-14481.
[http://dx.doi.org/10.1021/jp803016n]] [PMID: 18729404]
[31]
Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact, 2016, 3-4, 22-33.
[http://dx.doi.org/10.1016/j.impact.2016.09.004]
[32]
Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett., 2009, 9(4), 1593-1597.
[http://dx.doi.org/10.1021/nl803798y] [PMID: 19265429]
[33]
Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today, 2012, 15, 86-97.
[http://dx.doi.org/10.1016/S1369-7021(12)70044-5]
[34]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924.
[http://dx.doi.org/10.1002/adma.201001068] [PMID: 20706983]
[35]
Chen, X.; Chen, B. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol., 2015, 49(10), 6181-6189.
[http://dx.doi.org/10.1021/es5054946] [PMID: 25877513]
[36]
Gupta, S.S.; Sreeprasad, T.S.; Maliyekkal, S.M.; Das, S.K.; Pradeep, T. Graphene from sugar and its application in water purification. ACS Appl. Mater. Interfaces, 2012, 4(8), 4156-4163.
[http://dx.doi.org/10.1021/am300889u] [PMID: 22788773]
[37]
Gollavelli, G.; Chang, C.C.; Ling, Y.C. Facile synthesis of smart magnetic graphene for safe drinking water: Heavy metal removal and disinfection control. ACS Sustain. Chem.& Eng., 2013, 1, 462-472.
[http://dx.doi.org/10.1021/sc300112z]
[38]
Vadahanambi, S.; Lee, S.H.; Kim, W.J.; Oh, I.K. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol., 2013, 47(18), 10510-10517.
[http://dx.doi.org/10.1021/es401389g] [PMID: 23947834]
[39]
Zhang, Y.; Yan, T.; Yan, L.; Guo, X.; Cui, L.; Wei, Q.; Du, B. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. J. Mol. Liq., 2014, 198, 381-387.
[http://dx.doi.org/10.1016/j.molliq.2014.07.043]
[40]
Qian, W.; Greaney, P.A.; Fowler, S.; Chiu, S.K.; Goforth, A.M.; Jiao, J. Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustain. Chem.& Eng., 2014, 2, 1802-1810.
[http://dx.doi.org/10.1021/sc5001176]
[41]
Jiang, Y.; Wang, W.N.; Biswas, P.; Fortner, J.D. Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2 magnetite nanocomposites for advanced water treatment. ACS Appl. Mater. Interfaces, 2014, 6(14), 11766-11774.
[http://dx.doi.org/10.1021/am5025275] [PMID: 24983817]
[42]
Jiang, Y.; Wang, W.N.; Liu, D.; Nie, Y.; Li, W.; Wu, J.; Zhang, F.; Biswas, P.; Fortner, J.D. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ. Sci. Technol., 2015, 49(11), 6846-6854.
[http://dx.doi.org/10.1021/acs.est.5b00904] [PMID: 25942505]
[43]
Shen, Y.; Chen, B. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ. Sci. Technol., 2015, 49(12), 7364-7372.
[http://dx.doi.org/10.1021/acs.est.5b01057] [PMID: 26008607]
[44]
Zhang, C.; Zhang, R.Z.; Ma, Y.Q.; Guan, W.B.; Wu, X.L.; Liu, X.; Li, H.; Du, Y.L.; Pan, C.P. Preparation of cellulose/graphene composite and its applications for triazine pesticides adsorption from water. ACS Sustain. Chem.& Eng., 2015, 3, 396-405.
[http://dx.doi.org/10.1021/sc500738k]
[45]
Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M.H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J. Am. Chem. Soc., 2016, 138(20), 6360-6363.
[http://dx.doi.org/10.1021/jacs.6b02262] [PMID: 27157548]
[46]
El-Deen, A.G.; Boom, R.M.; Kim, H.Y.; Duan, H.; Chan-Park, M.B.; Choi, J.H. Flexible 3D nanoporous graphene for desalination and biodecontamination of brackish water via asymmetric capacitive deionization. ACS Appl. Mater. Interfaces, 2016, 8(38), 25313-25325.
[http://dx.doi.org/10.1021/acsami.6b08658]] [PMID: 27589373]
[47]
Han, T.; Zhang, X.; Fu, X.; Liu, J. Three-dimensional MGSiO3-coated SnO2/C nano structures for efficient adsorption of heavy metal ions from aqueous solution. RSC Advances, 2016, 6, 73412-73420.
[http://dx.doi.org/10.1039/C6RA11243A]
[48]
Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano, 2017, 11(5), 5087-5093.
[http://dx.doi.org/10.1021/acsnano.7b01965] [PMID: 28423271]
[49]
Chen, H.; Luo, J.; Wang, X.; Liang, X.; Zhao, Y.; Yang, C.; Baikenov, M.; Su, X. Synthesis of Al2O3/carbon composites from wastewater as superior adsorbents for Pb(II) and Cd(II) removal. Microporous Mesoporous Mater., 2018, 255, 69-75.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.023]
[50]
Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P.M.; Shi, G.; Chen, Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano, 2018, 12(1), 829-835.
[http://dx.doi.org/10.1021/acsnano.7b08196] [PMID: 29301080]
[51]
Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces, 2012, 4(3), 1186-1193.
[http://dx.doi.org/10.1021/am201645g] [PMID: 22304446]
[52]
Lee, Y.C.; Yang, J.W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J. Ind. Eng. Chem., 2012, 18, 1178-1185.
[http://dx.doi.org/10.1016/j.jiec.2012.01.005]
[53]
Wang, H.; Yuan, X.Z.; Wu, Y.; Huang, H.J.; Zeng, G.M.; Liu, Y.; Wang, X.L.; Lin, N.B.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci., 2013, 279, 432-440.
[http://dx.doi.org/10.1016/j.apsusc.2013.04.133]
[54]
Fan, L.; Luo, C.; Sun, M.; Li, X.; Qiu, H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B Biointerfaces, 2013, 103, 523-529.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.006] [PMID: 23261576]
[55]
Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Colloids Surf. B Biointerfaces, 2013, 107, 76-83.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.074] [PMID: 23466545]
[56]
Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol., 2013, 47(8), 3715-3723.
[http://dx.doi.org/10.1021/es400571g] [PMID: 23488812]
[57]
Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces, 2014, 6(20), 17426-17436.
[http://dx.doi.org/10.1021/am504826q] [PMID: 25222124]
[58]
Xu, C.; Xu, Y.; Zhu, J. Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification. ACS Appl. Mater. Interfaces, 2014, 6(18), 16117-16123.
[http://dx.doi.org/10.1021/am5040945] [PMID: 25148296]
[59]
McDonald, M.B.; Freund, M.S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer. ACS Appl. Mater. Interfaces, 2014, 6(16), 13790-13797.
[http://dx.doi.org/10.1021/am503242v] [PMID: 25046580]
[60]
Liu, Y.Q.; Zhang, Y.L.; Fu, X.Y.; Sun, H.B. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Appl. Mater. Interfaces, 2015, 7(37), 20930-20936.
[http://dx.doi.org/10.1021/acsami.5b06326] [PMID: 26302148]
[61]
Liu, J.; Li, X.; Jia, W.; Li, Z.; Zhao, Y.; Ren, S. Demulsification of crude oil-in-water emulsions driven by graphene oxide nanosheets. Energy Fuels, 2015, 29, 4644-4653.
[http://dx.doi.org/10.1021/acs.energyfuels.5b00966]
[62]
DeFever, R.S.; Geitner, N.K.; Bhattacharya, P.; Ding, F.; Ke, P.C.; Sarupria, S. PAMAM dendrimers and graphene: Materials for removing aromatic contaminants from water. Environ. Sci. Technol., 2015, 49(7), 4490-4497.
[http://dx.doi.org/10.1021/es505518r] [PMID: 25786141]
[63]
Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J., 2015, 281, 1-10.
[http://dx.doi.org/10.1016/j.cej.2015.06.043]
[64]
Seenivasan, R.; Chang, W.J.; Gunasekaran, S. Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl. Mater. Interfaces, 2015, 7(29), 15935-15943.
[http://dx.doi.org/10.1021/acsami.5b03904] [PMID: 26146883]
[65]
Wang, J.; Zhang, P.; Liang, B.; Liu, Y.; Xu, T.; Wang, L.; Cao, B.; Pan, K. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl. Mater. Interfaces, 2016, 8(9), 6211-6218.
[http://dx.doi.org/10.1021/acsami.5b12723] [PMID: 26849085]
[66]
Sitko, R.; Musielak, M.; Zawisza, B.; Talik, E.; Gagor, A. Graphene oxide/cellulose membranes in adsorption of divalent metal ions. RSC Advances, 2016, 6, 96595-96605.
[http://dx.doi.org/10.1039/C6RA21432K]
[67]
Pourbeyram, S. Effective removal of heavy metals from aqueous solutions by Graphene Oxide-Zirconium Phosphate (GO-Zr-P). Nanocomposite. Ind. Eng. Chem. Res., 2016, 55, 5608-5617.
[http://dx.doi.org/10.1021/acs.iecr.6b00728]
[68]
Lingamdinne, L.P.; Koduru, J.R.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy, 2016, 165, 64-72.
[http://dx.doi.org/10.1016/j.hydromet.2015.11.005]
[69]
Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett., 2016, 16(4), 2860-2866.
[http://dx.doi.org/10.1021/acs.nanolett.6b00768] [PMID: 26998896]
[70]
Zhao, J.; Zhu, Y.; He, G.; Xing, R.; Pan, F.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation. ACS Appl. Mater. Interfaces, 2016, 8(3), 2097-2103.
[http://dx.doi.org/10.1021/acsami.5b10551] [PMID: 26765336]
[71]
Zhao, X.; Su, Y.; Liu, Y.; Li, Y.; Jiang, Z. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Appl. Mater. Interfaces, 2016, 8(12), 8247-8256.
[http://dx.doi.org/10.1021/acsami.5b12876] [PMID: 26978041]
[72]
Ghafuri, H.; Talebi, M. Water-soluble phosphated graphene: Preparation, characterization, catalytic reactivity, and adsorption property. Ind. Eng. Chem. Res., 2016, 55, 2970-2982.
[http://dx.doi.org/10.1021/acs.iecr.5b02250]
[73]
Liu, T.; Yang, B.; Graham, N.; Yu, W.; Sun, K. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment. J. Membr. Sci., 2017, 542, 31-40.
[http://dx.doi.org/10.1016/j.memsci.2017.07.061]
[74]
Xu, W.L.; Fang, C.; Zhou, F.; Song, Z.; Liu, Q.; Qiao, R.; Yu, M. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett., 2017, 17(5), 2928-2933.
[http://dx.doi.org/10.1021/acs.nanolett.7b00148] [PMID: 28388082]
[75]
Yun, J.; Khan, F.A.; Baik, S. Janus graphene oxide sponges for high-purity fast separation of both water-in-oil and oil-in-water emulsions. ACS Appl. Mater. Interfaces, 2017, 9(19), 16694-16703.
[http://dx.doi.org/10.1021/acsami.7b03322] [PMID: 28481520]
[76]
You, Y.; Jin, X.H.; Wen, X.Y.; Sahajwalla, V.; Chen, V.; Bustamante, H.; Joshi, R.K. Application of graphene oxide membranes for removal of natural organic matter from water. Carbon, 2018, 129, 415-419.
[http://dx.doi.org/10.1016/j.carbon.2017.12.032]
[77]
White, R.L.; White, C.M.; Turgut, H.; Massoud, A.; Ryan Tian, Z. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J. Taiwan Inst. Chem. Eng., 2018, 85, 18-28.
[http://dx.doi.org/10.1016/j.jtice.2018.01.036]
[78]
Hosseini, M.; Azamat, J.; Erfan-Niya, H. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane. Appl. Surf. Sci., 2018, 427, 1000-1008.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.071]
[79]
Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7), 3979-3986.
[http://dx.doi.org/10.1021/nn1008897] [PMID: 20552997]
[80]
Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir, 2013, 29(34), 10727-10736.
[http://dx.doi.org/10.1021/la401940z] [PMID: 23895359]
[81]
Wei, Y.; Chao, G.; Meng, F.L.; Li, H.H.; Wang, L.; Liu, J.H.; Huang, X.J. SnO2/Reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper (II), and mercury (II): An interesting favorable mutual interference. J. Phys. Chem., 2012, C116, 1034-1041.
[82]
Song, H.J.; Zhang, L.C.; He, C.L.; Qu, Y.; Tian, Y.F.; Lv, Y. Graphene sheets decorated with s SnO2 nanoparticles: In situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem., 2011, 21, 5972-5977.
[http://dx.doi.org/10.1039/c0jm04331a]
[83]
Zhou, L.; Deng, H.P.; Wan, J.L.; Shi, J.; Su, T. A solvothermal method to produce RGO-Fe3O4 hybrid composite for fast chromium removal from aqueous solution. Appl. Surf. Sci., 2013, 283, 1024-1031.
[http://dx.doi.org/10.1016/j.apsusc.2013.07.063]
[84]
Cortinez, D.; Palma, P.; Castro, R.; Palz, H. A multifunctional bi-phasic graphene oxide/chitosan paper for water treatment. Separ. Purif. Tech., 2020, 235 116181
[85]
Sharma, P.; Hussain, N.; Borah, D.J.; Das, M.R. Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface: A comparative study. J. Chem. Eng. Data, 2013, 58, 3477-3488.
[http://dx.doi.org/10.1021/je400743r]
[86]
Ariffin, S.N.; Lim, H.N.; Jumeri, F.A.; Zobir, M.; Abdullah, A.H.; Ahmad, M.; Ibrahim, N.A.; Huang, N.M.; Teo, P.S.; Muthoosamy, K.; Harrison, I. Modification of polypropylene filter with metal oxide and reduced graphene oxide for water treatment. Ceram. Int., 2014, 40, 6927-6936.
[http://dx.doi.org/10.1016/j.ceramint.2013.12.016]
[87]
Cao, W.; Ma, Y.R.; Zhou, W.; Guo, L. One-pot hydrothermal synthesis of rGO-Fe3O4 hybrid nanocomposite for removal of Pb(II) magnetic separation. Chem. Res. Chin. Univ., 2015, 31, 508-513.
[http://dx.doi.org/10.1007/s40242-015-4487-6]
[88]
Gupta, S.S.; Chakraborty, I.; Maliyekkal, S.M.; Mark, T.A.; Pandey, D.K.; Das, S.K.; Pradeep, T. Simultaneous dehalogenation and removal of persistent halocarbon pesticides from water using graphene nanocomposites: A case study of Lindane. ACS Sustain. Chem.& Eng., 2015, 3, 1155-1163.
[http://dx.doi.org/10.1021/acssuschemeng.5b00080]
[89]
Chavez-Sumarriva, I.; Van Steenberge, P.H.M.; D’hooge, D.R. New insights in the treatment of waste water with graphene: Dual site adsorption by sodium dodecylbenzenesulfonate. Ind. Eng. Chem. Res., 2016, 55, 9387-9396.
[http://dx.doi.org/10.1021/acs.iecr.6b02302]
[90]
Zou, J.P.; Liu, H.L.; Luo, J.; Xing, Q.J.; Du, H.M.; Jiang, X.H.; Luo, X.B.; Luo, S.L.; Suib, S.L. Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb(III) and Sb(V) from water. ACS Appl. Mater. Interfaces, 2016, 8(28), 18140-18149.
[http://dx.doi.org/10.1021/acsami.6b05895] [PMID: 27355752]
[91]
Liu, L.; Ding, L.; Wu, X.; Deng, F.; Kang, R.; Luo, X. Enhancing the Hg(II) removal efficiency from real wastewater by novel thymine-grafted reduced graphene oxide complexes. Ind. Eng. Chem. Res., 2016, 55, 6845-6853.
[http://dx.doi.org/10.1021/acs.iecr.6b01359]
[92]
Chen, Z.; Li, Y.; Guo, M.; Xu, F.; Wang, P.; Du, Y.; Na, P. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III). J. Hazard. Mater., 2016, 310, 188-198.
[http://dx.doi.org/10.1016/j.jhazmat.2016.02.034] [PMID: 26921512]
[93]
Al Nafiey, A.; Addad, A.; Sieber, B.; Chastanet, G.; Barras, A.; Szunerits, S.; Boukherroub, R. Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions. Chem. Eng. J., 2017, 322, 375-384.
[http://dx.doi.org/10.1016/j.cej.2017.04.039]
[94]
Zhang, K.; Li, H.; Xu, X.; Yu, H. Synthesis of reduced graphene oxide/nio nanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater., 2018, 255, 7-14.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.037]
[95]
Akpotu, S.O.; Moodley, B. Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system. J. Environ. Manage., 2018, 209, 205-215.
[http://dx.doi.org/10.1016/j.jenvman.2017.12.037] [PMID: 29291490]
[96]
Wang, Y.; Wang, B.; Wang, J.; Ren, Y.; Xuan, C.; Liu, C.; Shen, C. Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. J. Hazard. Mater., 2018, 344, 849-856.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.040] [PMID: 29190582]
[97]
Chen, J.W.; Yuan, B.; Shi, J.W.; Yang, J.C.E.; Fu, M.L. Reduced graphene oxide and titania nanosheet cowrapped coal fly ash microspheres alternately as a novel photocatalyst for water treatment. Catal. Today, 2018, 315, 247-254.
[http://dx.doi.org/10.1016/j.cattod.2018.02.044]
[98]
Shen, L.; Jin, Z.; Wang, D.; Wang, Y.; Lu, Y. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel. Chemosphere, 2018, 190, 201-210.
[http://dx.doi.org/10.1016/j.chemosphere.2017.09.105] [PMID: 28987409]
[99]
Liu, Y.; Tu, W.; Chen, M.; Ma, L.; Yang, B.; Liang, Q.; Chen, Y. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation. Chem. Eng. J., 2018, 336, 263-277.
[http://dx.doi.org/10.1016/j.cej.2017.12.043]
[100]
Wei, G.; Miao, Y.E.; Zhang, C.; Yang, Z.; Liu, Z.; Tjiu, W.W.; Liu, T. Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. ACS Appl. Mater. Interfaces, 2013, 5(15), 7584-7591.
[http://dx.doi.org/10.1021/am401887g] [PMID: 23855959]
[101]
Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces, 2013, 5(2), 425-432.
[http://dx.doi.org/10.1021/am302500v] [PMID: 23265565]
[102]
Ye, S.; Liu, Y.; Feng, J. Low-density, mechanical compressible, water-induced self-recoverable graphene aerogels for water treatment. ACS Appl. Mater. Interfaces, 2017, 9(27), 22456-22464.
[http://dx.doi.org/10.1021/acsami.7b04536] [PMID: 28618215]
[103]
Ma, J.; Sun, Y.; Zhang, M.; Yang, M.; Gong, X.; Yu, F.; Zheng, J. Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption. Environ. Sci. Technol., 2017, 51(21), 12283-12292.
[http://dx.doi.org/10.1021/acs.est.7b02227] [PMID: 28960065]
[104]
Huang, J.; Yan, Z. Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion. Langmuir, 2018, 34(5), 1890-1898.
[http://dx.doi.org/10.1021/acs.langmuir.7b03866] [PMID: 29307185]
[105]
Yang, S.; Shen, C.; Chen, L.; Wang, C.; Rana, M.; Lv, P. Vapor-liquid deposition strategy to prepare superhydrophobic and superoleophilic graphene aerogel for oil-water separation. ACS Appl. Nano Mater., 2018, 1, 531-540.
[http://dx.doi.org/10.1021/acsanm.7b00027]
[106]
Ain, Q.U.; Farooq, M.U.; Jalees, M.I. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J. Water Process Eng., 2020, 33 101044
[http://dx.doi.org/10.1016/j.jwpe.2019.101044]
[107]
Liu, L.; Liu, S.X.; Zhang, Q.P.; Li, C.; Bao, C.L.; Liu, X.T.; Xiao, P.F. Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution on to graphene oxide. J. Chem. Eng. Data, 2013, 58, 209-216.
[http://dx.doi.org/10.1021/je300551c]
[108]
Wang, Z.H.; Yue, B.Y.; Teng, J.; Jiao, F.P.; Jiang, X.Y.; Yu, J.G.; Zhong, M.; Chen, X.Q. Tartaric acid modified graphene oxide as a novel adsorbent for high-efficiently removal of Cu(II) and Pb(II) from aqueous solutions. J. Taiwan Inst. Chem. Eng, 2016, 66, 181-190.
[http://dx.doi.org/10.1016/j.jtice.2016.06.018]
[109]
Zeng, T.; Yu, Y.; Li, Z.; Zuo, J.; Kuai, Z.; Jin, Y.; Wang, Y.; Wu, A.; Peng, C. 3D MnO2 nanotubes@reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater. Chem. Phys., 2019, 231, 105-108.
[http://dx.doi.org/10.1016/j.matchemphys.2019.04.019]
[110]
Zhang, Y.J.; Chi, H.J.; Zhang, W.H.; Sun, Y.Y.; Liang, Q.; Gu, Y.; Jing, R.Y. Highly efficient adsorption of copper ions by a PVP‐reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett., 2014, 6, 80-87.
[http://dx.doi.org/10.1007/BF03353772]
[111]
Zhang, Y.; Peng, W.; Xia, L.; Song, S. Adsorption of Cd(II) at the Interface of water and graphene oxide prepared from flaky graphite and amorphous graphite. J. Environ. Chem. Eng., 2017, 5, 4157-4164.
[http://dx.doi.org/10.1016/j.jece.2017.08.004]
[112]
Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans., 2011, 40(41), 10945-10952.
[http://dx.doi.org/10.1039/c1dt11005e] [PMID: 21918761]
[113]
Alvand, M.; Shemirani, F. Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Mikrochim. Acta, 2016, 183, 1749-1757.
[http://dx.doi.org/10.1007/s00604-016-1805-8]
[114]
Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater., 2015, 297, 251-260.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.068]
[115]
He, Y.Q.; Zhang, N.N.; Wang, X.D. Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin. Chem. Lett., 2011, 22, 859-862.
[http://dx.doi.org/10.1016/j.cclet.2010.12.049]
[116]
Zhang, N.; Qiu, H.; Si, Y.; Wang, W.; Gao, J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon, 2011, 49, 827-837.
[http://dx.doi.org/10.1016/j.carbon.2010.10.024]
[117]
Mishra, A.K.; Ramaprabhu, S. Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination, 2011, 282, 39-45.
[http://dx.doi.org/10.1016/j.desal.2011.01.038]
[118]
Zhan, W.; Gao, L.; Fu, X.; Siyal, S.H.; Sui, G.; Yang, X. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl. Surf. Sci., 2019, 467-468, 1122-1133.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.248]
[119]
Li, J.; Zhang, S.; Chen, C.; Zhao, G.; Yang, X.; Li, J.; Wang, X. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2012, 4(9), 4991-5000.
[http://dx.doi.org/10.1021/am301358b] [PMID: 22950475]
[120]
Wang, Y.; Liang, S.; Chen, B.; Guo, F.; Yu, S.; Tang, Y. Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites. PLoS One, 2013, 8(6) e65634
[http://dx.doi.org/10.1371/journal.pone.0065634] [PMID: 23776514]
[121]
Hu, X.J.; Liu, Y.G.; Zeng, G.M.; You, S.H.; Wang, H.; Hu, X.; Guo, Y.M.; Tan, X.F.; Guo, F.Y. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide-supported sulfanilic acid. J. Colloid Interface Sci., 2014, 435, 138-144.
[http://dx.doi.org/10.1016/j.jcis.2014.08.054] [PMID: 25238326]
[122]
Hu, X.J.; Liu, Y.G.; Wang, H.; Chen, A.W.; Zeng, G.M.; Liu, S.M.; Guo, Y.M.; Hu, X.; Li, T.T.; Wang, Y.Q.; Zhou, L.; Liu, S.H. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separ. Purif. Tech., 2013, 108, 189-195.
[http://dx.doi.org/10.1016/j.seppur.2013.02.011]
[123]
Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J. Mol. Liq., 2014, 191, 177-182.
[http://dx.doi.org/10.1016/j.molliq.2013.12.015]
[124]
Nandi, D.; Basu, T.; Debnath, S.; Ghosh, A.K.; Ghosh, A.; De, U.C. Mechanistic insight for the sorption of Cd(II) and Cu(II) from aqueous solution on magnetic Mn-doped Fe(III) oxide nanoparticle implanted graphene. J. Chem. Eng. Data, 2013, 58, 2809-2818.
[http://dx.doi.org/10.1021/je4005257]
[125]
Hur, J.; Shin, J.; Yoo, J.; Seo, Y.S. Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents. Sci. World J., 2015, 2015 836287
[126]
Sreeprasad, T.S.; Maliyekkal, S.M.; Lisha, K.P.; Pradeep, T. Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater., 2011, 186(1), 921-931.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.100] [PMID: 21168962]
[127]
Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y. SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interface Sci., 2012, 369(1), 381-387.
[http://dx.doi.org/10.1016/j.jcis.2011.12.023] [PMID: 22218342]
[128]
Huang, Z.H.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q.H.; Kang, F. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir, 2011, 27(12), 7558-7562.
[http://dx.doi.org/10.1021/la200606r] [PMID: 21591809]
[129]
Hao, J.; Ji, L.; Li, C.; Hu, C.; Wu, K. Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. Eng, 2018, 88, 137-145.
[http://dx.doi.org/10.1016/j.jtice.2018.03.045]
[130]
Yao, M.; Wang, Z.; Liu, Y.; Yang, G.; Chen, J. Preparation of dialdehyde cellulose grafted graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution. Carbohydr. Polym., 2019, 212, 345-351.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.052]
[131]
Li, L.; Luo, C.; Li, X.; Duan, H.; Wang, X. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int. J. Biol. Macromol., 2014, 66, 172-178.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.031] [PMID: 24560948]
[132]
Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J. Colloid Interface Sci., 2015, 448, 389-397.
[http://dx.doi.org/10.1016/j.jcis.2015.02.039] [PMID: 25746192]
[133]
Mahfouz, M.G.; Galhoum, A.A.; Gomaa, N.A.; Abdel-Rehem, S.S.; Atia, A.A.; Vincent, T.; Guibal, E. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem. Eng. J., 2015, 262, 198-209.
[http://dx.doi.org/10.1016/j.cej.2014.09.061]
[134]
Fan, L.; Luo, C.; Sun, M.; Qiu, H. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J. Mater. Chem., 2012, 22, 24577-24583.
[http://dx.doi.org/10.1039/c2jm35378d]
[135]
Li, L.; Duan, H.; Wang, X.; Luo, C. Adsorption property of Cr(VI) on magnetic mesoporous titanium dioxide-graphene oxide core-shell microspheres. New J. Chem., 2014, 38, 6008-6016.
[http://dx.doi.org/10.1039/C4NJ00782D]
[136]
Ma, H.; Zhang, Y.; Hu, Q.; Yang, D.; Yu, Z.; Zhai, M. Chemical reduction and removal of Cr(VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide. J. Mater. Chem., 2012, 22, 5914-5916.
[http://dx.doi.org/10.1039/c2jm00145d]
[137]
Zhang, Y.; Ma, H.; Peng, J.; Zhai, M.; Yu, Z. Cr(VI) removal from aqueous solution using chemically reduced and functionalized graphene oxide. J. Mater. Sci., 2013, 48, 1883-1889.
[http://dx.doi.org/10.1007/s10853-012-6951-8]
[138]
Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X. Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans., 2013, 42(41), 14710-14717.
[http://dx.doi.org/10.1039/c3dt50955a] [PMID: 23743481]
[139]
Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater., 2014, 278, 211-220.
[http://dx.doi.org/10.1016/j.jhazmat.2014.05.075] [PMID: 25016452]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2020
Page: [74 - 90]
Pages: 17
DOI: 10.2174/1570193X16666190516114023
Price: $65

Article Metrics

PDF: 27
HTML: 2