Microwave Facilitated Green Synthesis and Characterization of Acrylamide Grafted Copolymer of Kheri (Acacia chundra) Gum Polysaccharide

Author(s): Rishabha Malviya*, Pramod Kumar Sharma, Susheel Kumar Dubey

Journal Name: The Natural Products Journal

Volume 10 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: In the present study, an attempt was made to synthesize biodegradable, hemocompatible, antimicrobial and pH-responsive hydrogel.

Methods: Microwave facilitated green synthesis was carried out for the grafting of acrylamide over Kheri Gum Polysaccharide (KGP) backbone. The grafted hydrogel was characterized in terms of FTIR spectra, 1H NMR spectra, SEM image, contact angle, chemical resistant, biodegradation, blood clotting time, thrombogenicity, hemolytic activity and cytotoxic effect.

Results: More swelling was observed by graft copolymers (KGP-g-Am) in all the solvent systems such as double distilled water, 1 N NaOH and 0.1 N HCl than KGP. Graft copolymers showed more swelling in 1 N NaOH than in 0.1 N HCl, followed by distilled water. Blood clotting studies showed longer clotting time for KGP-g-Am as compared to the uncoated glass surface and KGP coated glass surface. Results obtained after molecular docking predict that TLR-4 receptors are considerably more liable than TLR-2 receptors for antimicrobial activity of both KGP-g-Am and KGP. Experimental data evidently explains the better antimicrobial efficacy of KGP-g-Am (K1) against Escherichia coli and Aspergillus niger than KGP. In molecular docking studies, KGP-g-Am showed prominent anticancer activity than KGP at the protease-activated receptor (PAR1). Results of in vitro cytotoxic activity against breast cancer cell lines (MCF 7) predict better control over cell growth by KGP-g-Am (K1) as compared to KGP.

Conclusion: It can be elicited from the data that microwave assisted grafting over KGP backbone modulates and introduces prerequisite properties within the polymer and can be utilized for various biomedical, pharmaceutical and cosmeceutical applications.

Keywords: Polysaccharide, graft copolymer, pH-responsive, antimicrobial activity, kheri gum, cytotoxicity, receptor.

[1]
Patahk, K.; Malviya, R. Polysaccharides for drug delivery. Mater. Res. Found., 2020, 73, 27-64.
[http://dx.doi.org/10.21741/9781644900772-2]
[2]
Malviya, R.; Sharma, P.K.; Kulkarni, G.T. Applications of Mucilages in drug delivery- a review. Adv. Biol. Res., 2011, 5(1), 1-7.
[3]
Kumar, A.; Ahuja, M. Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr. Polym., 2012, 90(1), 637-643.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.089] [PMID: 24751087]
[4]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents). Mater. Sci. Eng. C, 2016, 68, 929-938.
[http://dx.doi.org/10.1016/j.msec.2016.06.093] [PMID: 27524095]
[5]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Modification and applications of polysaccharide; Lap Lambert Academic Publishing: Germany, 2016.
[6]
Wang, W.; Wang, A. Synthesis and swelling properties of pH sensitive semi-IPN super absorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinyl pyrrolidone. Carbohydr. Polym., 2010, 80, 1028-1036.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.020]
[7]
Mukherjee, S.; Shrivastava, A.N. The structure of Acacia sundra Gum. Part I. Nature of the sugars present and structure of the aldobiouronic acid. J. Am. Chem. Soc., 1958, 80(10), 2536-2538.
[http://dx.doi.org/10.1021/ja01543a045]
[8]
Karadag, E.; Saraydın, D.; Giiven, O. Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromol. Mater. Eng., 2001, 286(1), 34-42.
[http://dx.doi.org/10.1002/1439-2054(20010101)286:1<34:AID-MAME34>3.0.CO;2-J]
[9]
Zu, J.; Elizabeth, F. Krietemeyer, Victoria, L.; Finkenstadt, Solaiman, D.; Ashby, R.D.; Garcia, R.A. Preparation of starch-polyglutamic acid graft copolymers by microwave irradiation and the characterization of their properties. Carbohydr. Polym., 2016, 140, 233-237.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.034] [PMID: 26876849]
[10]
Chen, T.; Xiao, Y.; Lu, W.; Liu, S.; Gan, L.; Yu, J.; Huang, J. Facile preparation of core cross-linked nanomicelles based on graft copolymers with pH responsivity and reduction sensitivity for doxorubicin delivery. Colloids Surf. B Biointerfaces, 2018, 161, 606-613.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.038] [PMID: 29156337]
[11]
Harvey, A.C.; Madsen, J.; Douglas, C.W.; MacNeil, S.; Armes, S.P. Antimicrobial graft copolymer gels. Biomacromolecules, 2016, 17(8), 2710-2718.
[http://dx.doi.org/10.1021/acs.biomac.6b00760] [PMID: 27409712]
[12]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Microwave controlled the green synthesis of acrylamide graft copolymers of Azadirachita indica gum for the wastewater management. Curr. Appl. Polym. Sci., 2018, 2(2), 130-149.
[http://dx.doi.org/10.2174/2452271602666180517093813]
[13]
Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999, 20(5), 409-417.
[http://dx.doi.org/10.1016/S0142-9612(98)00180-X] [PMID: 10204983]
[14]
Ulubayram, K.; Nur Cakar, A.; Korkusuz, P.; Ertan, C.; Hasirci, N. EGF containing gelatin-based wound dressings. Biomaterials, 2001, 22(11), 1345-1356.
[http://dx.doi.org/10.1016/S0142-9612(00)00287-8] [PMID: 11336307]
[15]
Guidoin, R.; Marceau, D.; Rao, T.J.; King, M.; Merhi, Y.; Roy, P.E.; Martin, L.; Duval, M. In vitro and in vivo characterization of an impervious polyester arterial prosthesis: The Gelseal triaxial graft. Biomaterials, 1987, 8(6), 433-441.
[http://dx.doi.org/10.1016/0142-9612(87)90079-2] [PMID: 3427141]
[16]
Jones, R.A.; Ziemer, G.; Schoen, F.J.; Britton, L.; Castaneda, A.R. A new sealant for knitted Dacron prostheses: Minimally cross-linked gelatin. J. Vasc. Surg., 1998, 7, 414-419.
[http://dx.doi.org/10.1016/0741-5214(88)90437-5]
[17]
dos Santos, K.S.C.R.; Coelho, J.F.J.; Ferreira, P.; Pinto, I.; Lorenzetti, S.G.; Ferreira, E.I.; Higa, O.Z.; Gil, M.H. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int. J. Pharm., 2006, 310(1-2), 37-45.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.019] [PMID: 16414219]
[18]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Antioxidant potential and emulsifying properties of Kheri (Acacia chundra,Mimosaceae) gum polysaccharide. Marmara Pharm. J., 2017, 21(3), 701-706.
[http://dx.doi.org/10.12991/marupj.323594]
[19]
Malviya, R.; Sharma, P.K.; Dubey, S.K. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater. Sci. Eng. C, 2018, 91, 772-784.
[http://dx.doi.org/10.1016/j.msec.2018.06.013] [PMID: 30033312]
[20]
Kaith, B.S.; Jindal, R.; Mittal, H.; Kumar, K. Synthesis, characterization and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective adsorption of saline from different petroleum fraction-saline emulsion. J. Appl. Polym. Sci., 2012, 24, 2037-2047.
[http://dx.doi.org/10.1002/app.35238]
[21]
Mittal, H.; Maity, A.; Sinha Ray, S. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: Isotherms and kinetic models. J. Phys. Chem. B, 2015, 119(5), 2026-2039.
[http://dx.doi.org/10.1021/jp5090857] [PMID: 25564870]
[22]
Giri, T.K.; Pure, S.; Tripathi, D.K. Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: Swelling behaviour, flocculation characteristics and acute toxicity study. Polímeros, 2015, 25(2), 168-174.
[http://dx.doi.org/10.1590/0104-1428.1717]
[23]
Sharma, K.; Kumar, V.; Kaith, B.S.; Kumar, V.; Som, S.; Kalia, S.; Swart, H.C. A study of the biodegradation behavior of (poly(mkethacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Adv, 2014, 25637-25649.
[24]
Thakore, I.M.; Desai, S.; Sarawade, B.D.; Devi, S. Studies on biodegradability, morphology and thermochemical properties of LDPE/modified starch blends. Eur. Polym. J., 2001, 37, 151-160.
[http://dx.doi.org/10.1016/S0014-3057(00)00086-0]
[25]
Maghchiche, A.; Haouam, A.; Immirzi, B. Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J. Taibah Univ. Sci., 2010, 4, 9-16.
[http://dx.doi.org/10.1016/S1658-3655(12)60022-3]
[26]
Wu, L.; Liu, M.; Rui, Liang Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour. Technol., 2008, 99(3), 547-554.
[http://dx.doi.org/10.1016/j.biortech.2006.12.027] [PMID: 17320380]
[27]
Marsh, H.; Rodriguez-Reinoso, F. Activated carbon, 1st ed; Elsevier Sci Technol. Books: Amsterdam, Netherlands, 2006, pp. 401-462.
[28]
Newcombe, G.; Hayes, R.; Drikas, M. Granular activated carbon: Importance of surface properties in the adsorption of naturally occurring organics. Colloid Surf. A., 1993, 78, 65-71.
[http://dx.doi.org/10.1016/0927-7757(93)80311-2]
[29]
Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999, 37, 1215-1221.
[http://dx.doi.org/10.1016/S0008-6223(98)00317-0]
[30]
Reddy, N.N.; Varaprasad, K.; Ravindra, S.; Reddy, G.V.S.; Reddy, K.M.S.; Reddy, K.M.M.; Reddy, K.M. Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf. A Physicochem. Eng. Asp., 2011, 385, 20-27.
[http://dx.doi.org/10.1016/j.colsurfa.2011.05.006]
[31]
Singhal, J.P.; Ray, A.R. Synthesis of blood compatible polyamide block copolymers. Biomaterials, 2002, 23(4), 1139-1145.
[http://dx.doi.org/10.1016/S0142-9612(01)00228-9] [PMID: 11791917]
[32]
General chapter (11) USP reference standards United States Pharmacopoeia-27-National Formulary 22, US Pharmacopoeial Convention Inc. Rockville,. 2004, pp. 2111-2139.
[33]
Aravindhan, R.; Sreelatha, T.; Perumal, P.T.; Gnanamani, A. Synthesis, characterization and biological profile of metal and azometal complexes of embelin. Complex metals, 2014, 1, 69-79.
[http://dx.doi.org/10.1080/2164232X.2014.886963]
[34]
Manna, P.J.; Mitra, T.; Pramanik, N.; Kavitha, V.; Gnanamani, A.; Kundu, P.P. Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int. J. Biol. Macromol., 2015, 75, 437-446.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.047] [PMID: 25661877]
[35]
Netea, M.G.; Van Der Graaf, C.A.A.; Vonk, A.G.; Verschueren, I.; Van Der Meer, J.W.M.; Kullberg, B.J. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis., 2002, 185(10), 1483-1489.
[http://dx.doi.org/10.1086/340511] [PMID: 11992285]
[36]
Zhang, X.; Ding, R.; Zhou, Y.; Zhu, R.; Liu, W.; Jin, L.; Yao, W.; Gao, X. Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108. PLoS One, 2013, 8(3)e60781
[http://dx.doi.org/10.1371/journal.pone.0060781] [PMID: 23556003]
[37]
Malviya, R.; Sharma, P.; Dubey, S. Kheri. Acacia chundra, family: Mimosaceae gum: Characterization using analytical, mathematical and pharmaceutical approaches. Polim. Med., 2017, 47(2), 65-76.
[http://dx.doi.org/10.17219/pim/76515] [PMID: 30009583]
[38]
Kaity, S.; Isaac, J.; Kumar, P.M.; Bose, A.; Wong, T.W.; Ghosh, A. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery. Carbohydr. Polym., 2013, 98(1), 1083-1094.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.037] [PMID: 23987450]
[39]
Sahar, M.; Hossein, S.; Anahita, G.; Maleyhe, A.; Hadis, S.; Farnosha, K. Effect of pH and salinity on to swelling properties of hydrogels based on H-alginate-g-poly (AMPS). Biosci. Biotechnol. Res. Asia, 2014, 11(1), 205-209.
[http://dx.doi.org/10.13005/bbra/1256]
[40]
Wang, F.R.; Mu, H.P.; Zhang, J.Y.; Li, W.X.; Wang, Q.Z.; Du, X.Z. Study on preparation and swelling kinetics of P(AA-Co-C8PhEO10Mac) pH- sensitive hydrogel in vitro drug release study. J. Appl. Polym. Sci., 2013, 130(3), 1981-1989.
[http://dx.doi.org/10.1002/app.39388]
[41]
Singh, A.V.; Nath, L.K.; Guha, M. Microwave assisted synthesis and characterization of Phaseolusaconitifolius starch-g-acrylamide. Carbohydr. Polym., 2011, 86, 872-876.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.029]
[42]
Saber-Samandari, S.; Gazi, M.; Yilmaz, E. UV induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym. Bull., 2012, 68, 1623-1639.
[http://dx.doi.org/10.1007/s00289-011-0643-4]
[43]
Wang, W.; Wang, A. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrollidone. Carbohydr. Polym., 2010, 80(4), 1028-1036.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.020]
[44]
Suruchi, B.S.; Kaith, R.; Jindal, G.S. Kapur. Enzyme based green approach for the synthesis of gum traganth and acrylic acid crosslinked hydrogel, its utilization in controlled fertilizer release and enhancement of water holding capacity of soil. Iran. Polym. J., 2013, 22, 561-570.
[http://dx.doi.org/10.1007/s13726-013-0155-1]
[45]
Erdener, K.; Omer, B.U.; Dursun, S. Swelling equilibria and dye adsorption studies of chemically crosslinked superadsorbent acrylamide/maleic acid hydrogels. Eur. Polym. J., 2000, 38, 2133-2141.
[46]
Pourjavadi, A.; Harzandi, A.M.; Hosseinzaden, H. Modified carragennan Synthesis of a novel polysaccharide based super absorbent hydrogel via graft copolymerization of acrylic acid on to kappa carrageenan in air. Eur. Polym. J., 2004, 40, 1363-1370.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.02.016]
[47]
Sharma, K.; Kaith, B.S.; Kumar, V.; Kalia, S.; Kumar, V.; Swart, H.C. Water retention and dye adsorption behaviour of Gg-cl-Poly (acrylic acid-aniline) based conductive hydrogels. Geoderma, 2014, 232-234, 45-55.
[http://dx.doi.org/10.1016/j.geoderma.2014.04.035]
[48]
Deepika, P.; Avjeet, K.S.; Michael, I.S. Recyclability of Poly (N-isopropylacrylamide) microgelo-based assemblies for organic dye removal from water. Colloid Polym. Sci., 2013, 291, 1795-1802.
[http://dx.doi.org/10.1007/s00396-013-2915-z]
[49]
Azzuoli, G.; Barbucci, R.; Benvenuti, M.; Ferruti, P.; Nocentini, M. Chemical and biological evaluation of heparinized poly(amido-amine) grafted polyurethane. Biomaterials, 1987, 8(1), 61-66.
[http://dx.doi.org/10.1016/0142-9612(87)90032-9] [PMID: 3828449]
[50]
Tanzi, M.C.; Barozzi, C.; Tieghi, G.; Ferrara, R.; Casini, G.; Tempesti, F. Heparinizable graft copolymers from chlorosulphonated polyethylene with poly(amido-amine) segments. Biomaterials, 1985, 6(4), 273-276.
[http://dx.doi.org/10.1016/0142-9612(85)90025-0] [PMID: 4052541]
[51]
Ishihara, K.; Oshida, H.; Endo, Y.; Ueda, T.; Watanabe, A.; Nakabayashi, N. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. J. Biomed. Mater. Res., 1992, 26(12), 1543-1552.
[http://dx.doi.org/10.1002/jbm.820261202] [PMID: 1484061]
[52]
Ueda, T.; Watanabe, A.; Ishihara, K.; Nakabayashi, N. Protein adsorption on biomedical polymers with a phosphorylcholine moiety adsorbed with phospholipid. J. Biomater. Sci. Polym. Ed., 1991, 3(2), 185-194.
[http://dx.doi.org/10.1163/156856291X00278] [PMID: 1768638]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 4
Year: 2020
Published on: 21 August, 2020
Page: [467 - 487]
Pages: 21
DOI: 10.2174/2210315509666190515112704
Price: $25

Article Metrics

PDF: 33
HTML: 1