Polymer-Lipid Hybrid Systems: Scope of Intravenous-To-Oral Switch in Cancer Chemotherapy

Author(s): Md. Rizwanullah, Javed Ahmad*, Saima Amin, Awanish Mishra, Mohammad Ruhal Ain, Mahfoozur Rahman

Journal Name: Current Nanomedicine
Formerly Recent Patents on Nanomedicine

Volume 10 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cancer chemotherapeutic administration by oral route has the potential to create “hospitalization free chemotherapy”. Such a therapeutic approach will improve patient compliance and significantly reduce the cost of treatment. In current clinical practice, chemotherapy is primarily carried out by intravenous injection or infusion and leads to various unwanted effects. Despite the presence of oral delivery challenges like poor aqueous solubility, low permeability, drug stability and substrate for multidrug efflux transporter, cancer chemotherapy delivery through oral administration has gained much attention recently due to having more patient compliance compared to the intravenous mode of administration. In order to address the multifaceted oral drug delivery challenges, a hybrid delivery system is conceptualized to merge the benefits of both polymeric and lipid-based drug carriers. Polymer-lipid hybrid systems have presented various significant benefits as an efficient carrier to facilitate oral drug delivery by surmounting the different associated obstacles. This carrier system has been found suitable to overcome the numerous oral absorption hindrances and facilitate the intravenous-to-oral switch in cancer chemotherapy. In this review, we aimed to discuss the different biopharmaceutic challenges in oral delivery of cancer chemotherapy and how this hybrid system may provide solutions to such challenges.

Keywords: Cancer, multidrug efflux transporter, oral absorption, polymer-lipid hybrid system.

[1]
Ahmad J, Amin S, Rahman M, et al. Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: applications and pharmacokinetics. Curr Drug Metab 2015; 16(8): 633-44.
[http://dx.doi.org/10.2174/1389200216666150812122128] [PMID: 26264206]
[2]
Ahmad J, Mir SR, Kohli K, Amin S. Quality by Design Approach for Self-Nanoemulsifying System of Paclitaxel. Sci Adv Mater 2014; 6(8): 1778-91.
[http://dx.doi.org/10.1166/sam.2014.1884]
[3]
Ahmad J, Mir SR, Kohli K, et al. Solid-nanoemulsion preconcentrate for oral delivery of paclitaxel: formulation design, biodistribution, and γ scintigraphy imaging. BioMed Res Int 2014.2014984756
[http://dx.doi.org/10.1155/2014/984756] [PMID: 25114933]
[4]
Ahmad J, Kohli K, Mir SR, Amin S. Lipid based nanocarriers for oral delivery of cancer chemothera-peutics: an insight in the intestinal lymphatic transport. Drug Deliv Lett 2013; 3: 38-46.
[http://dx.doi.org/10.2174/2210304x11303010006]
[5]
Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release 2013; 170(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[6]
Akhter S, Amin S, Ahmad J, et al. Resistance to targeted ABC transporters in cancer. Springer International Publishing 2015; pp. 245-72.
[http://dx.doi.org/10.1007/978-3-319-09801-2_10]
[7]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[PMID: 26640374]
[8]
Mei L, Zhang Z, Zhao L, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65(6): 880-90.
[http://dx.doi.org/10.1016/j.addr.2012.11.005] [PMID: 23220325]
[9]
Luo C, Sun J, Du Y, He Z. Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. J Control Release 2014; 176: 94-103.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.030] [PMID: 24389337]
[10]
Rao S, Prestidge CA. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin Drug Deliv 2016; 13(5): 691-707.
[http://dx.doi.org/10.1517/17425247.2016.1151872] [PMID: 26866382]
[11]
Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 334-49.
[http://dx.doi.org/10.3109/21691401.2014.951721] [PMID: 25237838]
[12]
Wu XY. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin Drug Deliv 2016; 13(5): 609-12.
[http://dx.doi.org/10.1517/17425247.2016.1165662] [PMID: 26978527]
[13]
Dehaini D, Fang RH, Luk BT, et al. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale 2016; 8(30): 14411-9.
[http://dx.doi.org/10.1039/C6NR04091H] [PMID: 27411852]
[14]
Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2014; 43(1): 444-72.
[http://dx.doi.org/10.1039/C3CS60299K] [PMID: 24100581]
[15]
Alonso MJ, Couvreur P. Historical view of the design and development of nanocarriers for overcoming bio-logical barriers. The Royal Society of Chemistry 2012.
[16]
Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond) 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[17]
Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B Biointerfaces 2012; 95: 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.001] [PMID: 22463845]
[18]
Gradauer K, Barthelmes J, Vonach C, et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release 2013; 172(3): 872-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.011] [PMID: 24140721]
[19]
Li X, Guo S, Zhu C, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials 2013; 34(37): 9678-87.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.048] [PMID: 24016855]
[20]
Ma T, Wang L, Tingyuan Y, Wang D, Ma G, Wang S. PLGA-lipid liposphere as a promising platform for oral delivery of proteins. Colloids Surf B Biointerfaces 2014; 117: 512-9.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.039] [PMID: 24698146]
[21]
Rao S, Richter K, Nguyen TH, et al. Pluronic-functionalized silica lipid hybrid microparticles: Im-proving the oral delivery of poorly water-soluble weak bases. Mol Pharm 2015; 12(12): 4424-33.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00622] [PMID: 26523928]
[22]
Krishnamurthy S, Vaiyapuri R, Zhang L, Chan JM. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater Sci 2015; 3(7): 923-36.
[http://dx.doi.org/10.1039/C4BM00427B] [PMID: 26221931]
[23]
Prasad P, Shuhendler A, Cai P, Rauth AM, Wu XY. Doxorubicin and mitomycin C co-loaded polymer-lipid hybrid nanoparticles inhibit growth of sensitive and multidrug resistant human mammary tumor xenografts. Cancer Lett 2013; 334(2): 263-73.
[http://dx.doi.org/10.1016/j.canlet.2012.08.008] [PMID: 22902994]
[24]
Prasad P, Cheng J, Shuhendler A, Rauth AM, Wu XY. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Deliv Transl Res 2012; 2(2): 95-105.
[http://dx.doi.org/10.1007/s13346-011-0051-1] [PMID: 25786718]
[25]
Fonte P, Nogueira T, Gehm C, Ferreira D, Sarmento B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 2011; 1(4): 299-308.
[http://dx.doi.org/10.1007/s13346-011-0023-5] [PMID: 25788364]
[26]
Chen W, Guo M, Wang S. Anti prostate cancer using PEGylated bombesin containing, cabazitaxel loading nano-sized drug delivery system. Drug Dev Ind Pharm 2016; 42(12): 1968-76.
[http://dx.doi.org/10.1080/03639045.2016.1185438] [PMID: 27143168]
[27]
Jain S, Patil SR, Swarnakar NK, Agrawal AK. Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm 2012; 9(9): 2626-35.
[http://dx.doi.org/10.1021/mp300202c] [PMID: 22871060]
[28]
Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today 2015; 20(1): 95-104.
[http://dx.doi.org/10.1016/j.drudis.2014.09.018] [PMID: 25277320]
[29]
Zou P, Stern ST, Sun D. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery. Pharm Res 2014; 31(3): 684-93.
[http://dx.doi.org/10.1007/s11095-013-1190-5] [PMID: 24065591]
[30]
Liu Y, Pan J, Feng SS. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 2010; 395(1-2): 243-50.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.008] [PMID: 20472049]
[31]
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16(5): 507-24.
[http://dx.doi.org/10.1080/17425247.2019.1605353] [PMID: 30957577]
[32]
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale 2017; 9(4): 1334-55.
[http://dx.doi.org/10.1039/C6NR08486A] [PMID: 27973629]
[33]
Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 2013; 85(3 Pt A): 427-43.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[34]
Troutier AL, Ladavière C. An overview of lipid membrane supported by colloidal particles. Adv Colloid Interface Sci 2007; 133(1): 1-21.
[http://dx.doi.org/10.1016/j.cis.2007.02.003] [PMID: 17397791]
[35]
Troutier AL, Delair T, Pichot C, Ladavière C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 2005; 21(4): 1305-13.
[http://dx.doi.org/10.1021/la047659t] [PMID: 15697275]
[36]
Ling G, Zhang P, Zhang W, et al. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release 2010; 148(2): 241-8.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.010] [PMID: 20727928]
[37]
Vyas SP, Khar RK. Targeted controlled drug delivery: Novel carrier systems 2004.
[38]
Chidambaram M, Krishnasamy K. Modifications to the conventional nanoprecipitation technique: an approach to fabricate narrow sized polymeric nanoparticles. Adv Pharm Bull 2014; 4(2): 205-8.
[PMID: 24511486]
[39]
Zhao P, Zheng M, Yue C, et al. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials 2014; 35(23): 6037-46.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.019] [PMID: 24776486]
[40]
Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem Pharm Bull (Tokyo) 2010; 58(5): 650-5.
[http://dx.doi.org/10.1248/cpb.58.650] [PMID: 20460791]
[41]
Xie S, Wang S, Zhao B, Han C, Wang M, Zhou W. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces 2008; 67(2): 199-204.
[http://dx.doi.org/10.1016/j.colsurfb.2008.08.018] [PMID: 18829272]
[42]
Coombes AG, Yeh MK, Lavelle EC, Davis SS. The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method. J Control Release 1998; 52(3): 311-20.
[http://dx.doi.org/10.1016/S0168-3659(98)00006-6] [PMID: 9743451]
[43]
Wahlgren M, Christensen KL, Jørgensen EV, Svensson A, Ulvenlund S. Oral-based controlled release formulations using poly(acrylic acid) microgels. Drug Dev Ind Pharm 2009; 35(8): 922-9.
[http://dx.doi.org/10.1080/03639040802698810] [PMID: 19466881]
[44]
Kong SD, Sartor M, Hu CM, Zhang W, Zhang L, Jin S. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater 2013; 9(3): 5447-52.
[http://dx.doi.org/10.1016/j.actbio.2012.11.006] [PMID: 23149252]
[45]
Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 2011; 85(2): 214-20.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.033] [PMID: 21439797]
[46]
Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 2014; 9: 3719-35.
[http://dx.doi.org/10.2147/IJN.S61670] [PMID: 25143724]
[47]
Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44(1): 235-49.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[48]
Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci 2009; 98(8): 2549-72.
[http://dx.doi.org/10.1002/jps.21650] [PMID: 19373886]
[49]
Sugano K. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds. Int J Pharm 2011; 405(1-2): 79-89.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.049] [PMID: 21134428]
[50]
Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man--fact or myth. Pharm Res 1997; 14(6): 763-6.
[http://dx.doi.org/10.1023/A:1012102522787] [PMID: 9210194]
[51]
Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet 2002; 41(4): 235-53.
[http://dx.doi.org/10.2165/00003088-200241040-00001] [PMID: 11978143]
[52]
Szakács G, Váradi A, Ozvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today 2008; 13(9-10): 379-93.
[http://dx.doi.org/10.1016/j.drudis.2007.12.010] [PMID: 18468555]
[53]
Rizwanullah M, Ahmad J, Amin S. Nanostructured lipid carriers: a novel platform for chemotherapeu-tics. Curr Drug Deliv 2016; 13(1): 4-26.
[http://dx.doi.org/10.2174/1567201812666150817124133] [PMID: 26279117]
[54]
Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 2001; 50(Suppl. 1): S41-67.
[http://dx.doi.org/10.1016/S0169-409X(01)00179-X] [PMID: 11576695]
[55]
van Herwaarden AE, van Waterschoot RA, Schinkel AH. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci 2009; 30(5): 223-7.
[http://dx.doi.org/10.1016/j.tips.2009.02.003] [PMID: 19328560]
[56]
Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol 1999; 13(2): 154-68.
[http://dx.doi.org/10.1111/j.1472-8206.1999.tb00334.x] [PMID: 10226759]
[57]
Tabata T, Katoh M, Tokudome S, Nakajima M, Yokoi T. Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab Dispos 2004; 32(10): 1103-10.
[http://dx.doi.org/10.1124/dmd.104.000554] [PMID: 15269188]
[58]
Akhter S, Ramazani F, Ahmad MZ, et al. Theranostic metallic nanomedicine in oncology: new insights and concerns. Front Anti-Cancer Drug Discov 2014; 3: 262-91.
[http://dx.doi.org/10.2174/9781608058846114030010]
[59]
Nassar T, Attili-Qadri S, Harush-Frenkel O, et al. High plasma levels and effective lymphatic uptake of docetaxel in an orally available nanotransporter formulation. Cancer Res 2011; 71(8): 3018-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3118] [PMID: 21363913]
[60]
Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 2012; 33(28): 6758-68.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.026] [PMID: 22748771]
[61]
Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm 2013; 10(5): 1865-73.
[http://dx.doi.org/10.1021/mp300649z] [PMID: 23495754]
[62]
Unal H, d’Angelo I, Pagano E, et al. Core–shell hy-brid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evalu-ation. J Nanopart Res 2015; 17(42): 1-13.
[63]
Guo J, Ping Q, Jiang G, Huang L, Tong Y. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 2003; 260(2): 167-73.
[http://dx.doi.org/10.1016/S0378-5173(03)00254-0] [PMID: 12842337]
[64]
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core-shell type lipid-polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2016; 81: 162-71.
[http://dx.doi.org/10.1016/j.ejps.2015.10.021] [PMID: 26517962]
[65]
Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 2006; 116(3): 275-84.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.007] [PMID: 17097178]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2020
Page: [164 - 177]
Pages: 14
DOI: 10.2174/2468187309666190514083508
Price: $65

Article Metrics

PDF: 19