Higher-Order and Mixed Discrete Derivatives such as a Novel Graph- Theoretical Invariant for Generating New Molecular Descriptors

Author(s): Oscar Martínez-Santiago, Yovani Marrero-Ponce*, Ricardo Vivas-Reyes, Mauricio E.O. Ugarriza, Elízabeth Hurtado-Rodríguez, Yoan Martínez-López, F. Javier Torres, Cesar H. Zambrano, Hai Pham-The

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 11 , 2019

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Recently, some authors have defined new molecular descriptors (MDs) based on the use of the Graph Discrete Derivative, known as Graph Derivative Indices (GDI). This new approach about discrete derivatives over various elements from a graph takes as outset the formation of subgraphs. Previously, these definitions were extended into the chemical context (N-tuples) and interpreted in structural/physicalchemical terms as well as applied into the description of several endpoints, with good results.

Objective: A generalization of GDIs using the definitions of Higher Order and Mixed Derivative for molecular graphs is proposed as a generalization of the previous works, allowing the generation of a new family of MDs.

Methods: An extension of the previously defined GDIs is presented, and for this purpose, the concept of Higher Order Derivatives and Mixed Derivatives is introduced. These novel approaches to obtaining MDs based on the concepts of discrete derivatives (finite difference) of the molecular graphs use the elements of the hypermatrices conceived from 12 different ways (12 events) of fragmenting the molecular structures. The result of applying the higher order and mixed GDIs over any molecular structure allows finding Local Vertex Invariants (LOVIs) for atom-pairs, for atoms-pairs-pairs and so on. All new families of GDIs are implemented in a computational software denominated DIVATI (acronym for Discrete DeriVAtive Type Indices), a module of KeysFinder Framework in TOMOCOMD-CARDD system.

Results: QSAR modeling of the biological activity (Log 1/K) of 31 steroids reveals that the GDIs obtained using the higher order and mixed GDIs approaches yield slightly higher performance compared to previously reported approaches based on the duplex, triplex and quadruplex matrix. In fact, the statistical parameters for models obtained with the higher-order and mixed GDI method are superior to those reported in the literature by using other 0-3D QSAR methods.

Conclusion: It can be suggested that the higher-order and mixed GDIs, appear as a promissory tool in QSAR/QSPRs, similarity/dissimilarity analysis and virtual screening studies.

Keywords: Discrete derivative, Graph theory, Higher order of discrete derivative, Mixed discrete derivative, Molecular fragmentations, Frequency hypermatrix, Derivative of molecular graph, QSAR, Steroids, Corticosteroid binding globulin.

Kekulé, A. Untersuchungen uber aromatische Verbindungen. Ann. der Chem. Pharm., 1866, 137(2), 129-196.
Van’t Hoff, J.H. La Chimie dans l'espace. Rotterdam : P.M., Bazendijk, , 1875.
Brown, A.C.; Fraser, T.R. On the connection between chemical constitution and physiological action. Part. I. On the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Trans. R. Soc. Edinb., 1868, 25(1), 151-203. [http://dx.doi.org/10.1017/S0080456800028155].
Mills, E.J. On melting point and boiling point as related to composition. Philos. Mag., 1884, 17(105), 173-187. [http://dx.doi.org/10.1080/14786448408627502].
Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics; Wiley-VCH: Wenheim, Germany, 2009.
Wiener, H. Correlation of heat of isomerization, and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J. Am. Chem. Soc., 1947, 69(11), 2636-2638. [http://dx.doi.org/10.1021/ja01203a022].
Platt, J.R. Influence of neighbor bonds on additive bond properties in paraffins. J. Chim. Phys., 1947, 15, 419-420. [http://dx.doi.org/10.1063/1.1746554].
Duca, J.S.; Hopfinger, A.J. Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1367-1387. [http://dx.doi.org/10.1021/ci0100090]. [PMID: 11604039].
Vedani, A.; Dobler, M.; Lill, M.A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem., 2005, 48(11), 3700-3703. [http://dx.doi.org/10.1021/jm050185q]. [PMID: 15916421].
Gute, B.D.; Grunwald, G.D.; Basak, S.C. Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): a hierarchical QSAR approach. SAR QSAR Environ. Res., 1999, 10(1), 1-15. [http://dx.doi.org/10.1080/10629369908039162]. [PMID: 10408125].
Basak, S.C.; Gute, B.D.; Grunwald, G.D. Use of topostructural, topochemical, and geometric parameters in the prediction of vapor pressure: A hierarchical QSAR approach. J. Chem. Inf. Comput. Sci., 1997, 37(4), 651-655. [http://dx.doi.org/10.1021/ci960176d].
Marrero-Ponce, Y.; Santiago, O.M.; López, Y.M.; Barigye, S.J.; Torrens, F. Derivatives in discrete mathematics: A novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. J. Comput. Aided Mol. Des., 2012, 26(11), 1229-1246. [http://dx.doi.org/10.1007/s10822-012-9591-9]. [PMID: 23124489].
Martínez-Santiago, O.; Millán-Cabrera, R.; Marrero-Ponce, Y.; Barigye, S.J.; Martínez-López, Y.; Torrens, F.; Pérez-Giménez, F. Discrete derivatives for atom-pairs as a novel graph-theoretical invariant for generating new molecular descriptors: orthogonality, interpretation and qsars/qsprs on benchmark databases. Mol. Inform., 2014, 33(5), 343-368. [http://dx.doi.org/10.1002/minf.201300173]. [PMID: 27485891].
Martínez Santiago, O.; Marrero Ponce, Y.; Millán Cabrera, R.; Barigye, S.J.; Martínez López, Y.; Artiles Martínez, L.M.; Guerra de León, J.O.; Pérez Giménez, F. Extending graph (discrete) derivative descriptors to n-tuple atom-relations. MATCH Commun. Math. Comput. Chem., 2015, 73(2), 397-420.
Martínez-Santiago, O.; Cabrera, R.M.; Marrero-Ponce, Y.; Barigye, S.J.; Le-Thi-Thu, H.; Torres, F.J.; Zambrano, C.H.; Yaber-Goenaga, I.; Cruz-Monteagudo, M.; López, Y.M.; Giménez, F.P.; Torrens, F. Generalized molecular descriptors derived from event-based discrete derivative. Curr. Pharm. Des., 2016, 22(33), 5095-5113. [http://dx.doi.org/10.2174/1381612822666160610114148]. [PMID: 27852205].
Martínez-Santiago, O.; Marrero-Ponce, Y.; Barigye, S.J.; Le Thi Thu, H.; Torres, F.J.; Zambrano, C.H.; Muñiz Olite, J.L.; Cruz-Monteagudo, M.; Vivas-Reyes, R.; Vázquez Infante, L.; Artiles Martínez, L.M. Physico-chemical and structural interpretation of discrete derivative indices on n-tuples atoms. Int. J. Mol. Sci., 2016, 17(6), 812-825. [http://dx.doi.org/10.3390/ijms17060812]. [PMID: 27240357].
Gorbátov, V. A. Fundamentos de la Matemática Discreta Moscú URSS: Mir, 1988.
Martínez-López, Y.; Martínez-Santiago, O.; Marrero-Ponce, Y.; Millán-Cabrera, R.; Jones-Barigye, S. DIVATI. La Habana. , 2015.
Marrero-Ponce, Y.; Martínez López, Y.; Martínez Santiago, O.; Barigye, S.J. TOMOCOMD-CARDD-DIVATI, 1.0; Unit of Computer-aided molecular “biosilico” discovery and bioinformatic research; CAMD-BIR Unit, 2013.
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967. [http://dx.doi.org/10.1021/ja00226a005]. [PMID: 22148765].
García-Jacas, C.R.; Marrero-Ponce, Y.; Acevedo-Martínez, L.; Barigye, S.J.; Valdés-Martiní, J.R.; Contreras-Torres, E. QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps. J. Comput. Chem., 2014, 35(18), 1395-1409. [http://dx.doi.org/10.1002/jcc.23640]. [PMID: 24889018].
García-Jacas, C.R.; Marrero-Ponce, Y.; Barigye, S.J.; Valdés-Martiní, J.R.; Rivera-Borroto, O.M.; Verbel, J.O. N-linear algebraic maps to codify chemical structures: A suitable generalization to the atom-pairs approaches? Curr. Drug Metab., 2014, 15(4), 441-469. [PMID: 24909423].
Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante, 5th ed; Prentice Hall Int, 1999.
Todeschini, R.; Ballabio, D.; Consonni, V.; Mauri, A.; Pavan, M. MobyDigs. TALETE srl, 2004.
Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M.; Leardi, R. MobyDigs: Software for regression and classification models by genetic algorithms. In: Data Handling in Science and Technology. Nature- inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks, 2003, Vol. 23, 141-167.
So, S.S.; Karplus, M. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. J. Med. Chem., 1997, 40(26), 4347-4359. [http://dx.doi.org/10.1021/jm970487v]. [PMID: 9435904].
Amat, L.; Besalú, E.; Carbó-Dorca, R.; Ponec, R. Identification of active molecular sites using quantum-self-similarity measures. J. Chem. Inf. Comput. Sci., 2001, 41(4), 978-991. [http://dx.doi.org/10.1021/ci000160u]. [PMID: 11500114].
Liu, S.S.; Yin, C.S.; Wang, L.S. Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors. J. Chem. Inf. Comput. Sci., 2002, 42(3), 749-756. [http://dx.doi.org/10.1021/ci010245a]. [PMID: 12086537].
Beger, R.D.; Harris, S.; Xie, Q. Models of steroid binding based on the minimum deviation of structurally assigned 13C NMR spectra analysis (MiDSASA). J. Chem. Inf. Comput. Sci., 2004, 44(4), 1489-1496. [http://dx.doi.org/10.1021/ci049925e]. [PMID: 15272857].
Polański, J. The receptor-like neural network for modeling corticosteroid and testosterone binding globulins. J. Chem. Inf. Comput. Sci., 1997, 37(3), 553-561. [http://dx.doi.org/10.1021/ci960105e]. [PMID: 9177002].
Robert, D.; Amat, L.; Carbó-Dorca, R. Three-dimensional quantitative structure-activity relationships from tuned molecular quantum similarity measures: prediction of the corticosteroid-binding globulin binding affinity for a steroid family. J. Chem. Inf. Comput. Sci., 1999, 39(2), 333-344. [http://dx.doi.org/10.1021/ci980410v]. [PMID: 10192946].
Parretti, M.F.; Kroemer, R.T.; Rothman, J.H.; Richards, W.G. Alignment of molecules by the monte carlo optimization of molecular similarity indices. J. Comput. Chem., 1997, 18, 1344-1353. [http://dx.doi.org/10.1002/(SICI)1096-987X(199708)18:11<1344:AID-JCC2>3.0.CO;2-L].
Silverman, B.D.; Platt, D.E. Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J. Med. Chem., 1996, 39(11), 2129-2140. [http://dx.doi.org/10.1021/jm950589q]. [PMID: 8667357].
Tuppurainen, K.; Viisas, M.; Peräkylä, M.; Laatikainen, R. Ligand intramolecular motions in ligand-protein interaction: ALPHA, a novel dynamic descriptor and a QSAR study with extended steroid benchmark dataset. J. Comput. Aided Mol. Des., 2004, 18(3), 175-187. [http://dx.doi.org/10.1023/B:JCAM.0000035198.11110.48]. [PMID: 15368918].
Tuppurainen, K.; Viisas, M.; Laatikainen, R.; Peräkylä, M. Evaluation of a novel electronic eigenvalue (EEVA) molecular descriptor for QSAR/QSPR studies: Validation using a benchmark steroid data set. J. Chem. Inf. Comput. Sci., 2002, 42(3), 607-613. [http://dx.doi.org/10.1021/ci0103830]. [PMID: 12086522].
Polanski, J.; Bak, A. Modeling steric and electronic effects in 3D- and 4D-QSAR schemes: predicting benzoic pK(a) values and steroid CBG binding affinities. J. Chem. Inf. Comput. Sci., 2003, 43(6), 2081-2092. [http://dx.doi.org/10.1021/ci034118l]. [PMID: 14632460].
De, K.; Sengupta, C.; Roy, K. QSAR modeling of globulin binding affinity of corticosteroids using AM1 calculations. Bioorg. Med. Chem., 2004, 12(12), 3323-3332. [http://dx.doi.org/10.1016/j.bmc.2004.03.055]. [PMID: 15158800].
Kellogg, G.E.; Kier, L.B.; Gaillard, P.; Hall, L.H. E-state fields: Applications to 3D QSAR. J. Comput. Aided Mol. Des., 1996, 10(6), 513-520. [http://dx.doi.org/10.1007/BF00134175]. [PMID: 9007685].
Beger, R.D.; Wilkes, J.G. Developing 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroid binding to the corticosteroid binding globulin. J. Comput. Aided Mol. Des., 2001, 15(7), 659-669. [http://dx.doi.org/10.1023/A:1011959120313]. [PMID: 11688946].
de Gregorio, C.; Kier, L.B.; Hall, L.H. QSAR modeling with the electrotopological state indices: Corticosteroids. J. Comput. Aided Mol. Des., 1998, 12(6), 557-561. [http://dx.doi.org/10.1023/A:1008048822117]. [PMID: 9879503].
Turner, D.B.; Willett, P.; Ferguson, A.M.; Heritage, T.W. Evaluation of a novel molecular vibration-based descriptor (EVA) for QSAR studies: 2. Model validation using a benchmark steroid dataset. J. Comput. Aided Mol. Des., 1999, 13(3), 271-296. [http://dx.doi.org/10.1023/A:1008012732081]. [PMID: 10216834].
Polanski, J.; Walczak, B. The comparative molecular surface analysis (COMSA): A novel tool for molecular design. Comput. Chem., 2000, 24(5), 615-625. [http://dx.doi.org/10.1016/S0097-8485(00)00064-4]. [PMID: 10890372].
Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem., 2000, 43(17), 3233-3243. [http://dx.doi.org/10.1021/jm000941m]. [PMID: 10966742].
Kubinyi, H.; Hamprecht, F.A.; Mietzner, T. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem., 1998, 41(14), 2553-2564. [http://dx.doi.org/10.1021/jm970732a]. [PMID: 9651159].
Beger, R.D.; Buzatu, D.A.; Wilkes, J.G.; Lay, J.O., Jr Comparative structural connectivity spectra analysis (CoSCoSA) models of steroid binding to the corticosteroid binding globulin. J. Chem. Inf. Comput. Sci., 2002, 42(5), 1123-1131. [http://dx.doi.org/10.1021/ci025511e]. [PMID: 12376999].
Maw, H.H.; Hall, L.H. E-state modeling of corticosteroids binding affinity validation of model for small data set. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1248-1254. [http://dx.doi.org/10.1021/ci010037i]. [PMID: 11604024].
Marín, R.M.; Aguirre, N.F.; Daza, E.E. Graph theoretical similarity approach to compare molecular electrostatic potentials. J. Chem. Inf. Model., 2008, 48(1), 109-118. [http://dx.doi.org/10.1021/ci7001878]. [PMID: 18166018].
Manchester, J.; Czermiński, R. SAMFA: simplifying molecular description for 3D-QSAR. J. Chem. Inf. Model., 2008, 48(6), 1167-1173. [http://dx.doi.org/10.1021/ci800009u]. [PMID: 18503264].
Silverman, B.D.; Platt, D.E.; Pitman, M.; Rigoutsos, I. Comparative molecular moment analysis (COMMA); Kluwer Academic Publishers, 1998.
Andrew, C.; Good, S.S.S.; Richards, W.G. Structure-activity relationships from molecular similarity matrices. J. Med. Chem., 1993, 36(4), 433-438.
Wagener, M.; Sadowski, J.; Gasteiger, J. Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor. J. Am. Chem. Soc., 1995, 117, 7769-7775. [http://dx.doi.org/10.1021/ja00134a023].

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 24 July, 2019
Page: [944 - 956]
Pages: 13
DOI: 10.2174/1568026619666190510093651
Price: $65

Article Metrics

PDF: 20
PRC: 2