Multicomponent Catalytic Synthesis of 1,5-Benzodiazepines: An Update

Author(s): Rajesh K. Singh*, Sadhna Sharda, Shikha Sharma, Sahil Kumar, Deo Nandan Prasad

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

1,5-Benzodiazepines are considered some of the most vital classes of heterocyclic compounds due to their amazing biological and varied pharmacological activities. They are regarded as privileged structures and therefore have been striking synthetic targets for organic and medicinal chemists over the last decade. This results in the exploration of various silica supported catalysts, Lewis acids, organoacids, magnetic nanoparticles and other miscellaneous catalysts that have been investigated till date for an efficient and green synthesis of 1,5-benzodiazepine and its derivatives. The current review article primarily covers the one-pot green chemical synthesis of 1,5- benzodiazepines using various novel catalysts. The main motive of this review is the assessment of the literature on various catalysts along with their yield, reaction condition, and mechanism of action. In the end, the entire catalysts are structured systematically into various Lewis acids, Bronsted organoacids, supported catalysts, nanocatalysts, and miscellaneous catalysts and are presented in the form of tables for quick ‘at a glance’ study of catalysts, their reaction condition, time taken, etc.

Keywords: 1, 5-Benzodiazepines, green catalyst, lewis catalyst, magnetic nanoparticles, organoacids, silica-supported catalyst.

[1]
Randall, L.O. Psychopharmacological agents. New York, AcademicPress,; , 1974. 3, pp. 175-281.
[2]
Blair, T.; Webb, G.A. Electronic factors in the structure-activity relationship of some 1,4-benzodiazepin-2-ones. J. Med. Chem., 1977, 20(9), 1206-1210.
[http://dx.doi.org/10.1021/jm00219a019] [PMID: 926122]
[3]
Fryer, R.I. Bicyclic diazepines. In: Comprehensive Heterocyclic Chemistry;; E.C, Taylor., Ed.; Wiley, NewYork. , 1991; p. 50.
[4]
Sternbach, L.H. The benzodiazepine story J. Med. Chem.,, 1979, 22(1), 1-7.
[http://dx.doi.org/10.1021/jm00187a001] [PMID: 34039]
[5]
Ha, S.K.; Shobha, D.; Moon, E.; Chari, M.A.; Mukkanti, K.; Kim, S.H.; Ahn, K.H.; Kim, S.Y. Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives. Bioorg. Med. Chem. Lett., 2010, 20(13), 3969-3971.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.133] [PMID: 20537534]
[6]
Devi, T.K.; Achaiah, G.; Reddy, V.M. Synthesis of 6-alkyl/aryl-5,11-dihydro-9-nitro[1]benzopyrano[2,3-b][1,5] benzodiazepine-1,3-diones as possible antipsychotic agents. J. Indian Chem. Soc., 1988, 65, 567-570.
[7]
Narayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo [4,3-a][1,4] benzodiazepine derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2006, 41(3), 417-422.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.003] [PMID: 16472891]
[8]
Hussenether, T.; Hübner, H.; Gmeiner, P.; Troschütz, R. Clozapine derived 2,3-dihydro-1H-1,4- and 1,5-benzodiazepines with D4 receptor selectivity: synthesis and biological testing. Bioorg. Med. Chem., 2004, 12(10), 2625-2637.
[http://dx.doi.org/10.1016/j.bmc.2004.03.023] [PMID: 15110844]
[9]
Roma, G.; Grossi, G.C.; Di Braccio, M.; Ghia, M.; Mattioli, F. 1,5-Benzodiazepines. IX. A new route to substituted 4H-[1,2, 4] triazolo [4,3-a][1,5]benzodiazepin-5-amines with analgesic and/or anti-inflammatory activity. Eur. J. Med. Chem., 1991, 26, 489-496.
[http://dx.doi.org/10.1016/0223-5234(91)90144-C]
[10]
Kumar, R.; Joshi, Y.C. Synthesis spectral studies and biological activity of 3H-1,5-benzodiazepine derivatives. ARKIVOC, 2007, 13, 142-149.
[11]
Di Braccio, M.; Grossi, G.; Roma, G.; Vargiu, L.; Mura, M.; Marongiu, M.E. 1,5-Benzodiazepines. Part XII. Synthesis and biological evaluation of tricyclic and tetracyclic 1,5-benzodiazepine derivatives as nevirapine analogues. Eur. J. Med. Chem., 2001, 36(11-12), 935-949.
[http://dx.doi.org/10.1016/S0223-5234(01)01283-1] [PMID: 11755236]
[12]
Kavali, J.R.; Badami, B.V. 1,5-benzodiazepine derivatives of 3-arylsydnones: synthesis and antimicrobial activity of 3-aryl-4-[2′-aryl-2′,4′,6′,7′-tetrahydro-(1‘H)-1’,5′-benzodiazepine-4′ -yl]sydnones. Farmaco, 2000, 55(5), 406-409.
[http://dx.doi.org/10.1016/S0014-827X(00)00061-6] [PMID: 10983288]
[13]
Kamal, A.; Shankaraiah, N.; Prabhakar, S.; Reddy, ChR.; Markandeya, N.; Reddy, K.L.; Devaiah, V. Solid-phase synthesis of new pyrrolobenzodiazepine-chalcone conjugates: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett., 2008, 18(7), 2434-2439.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.047] [PMID: 18325766]
[14]
Varala, R.; Enugala, R.; Srinivas, R. Adapa. p-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. J. Braz. Chem. Soc., 2007, 18(2), 291-296.
[http://dx.doi.org/10.1590/S0103-50532007000200008]
[15]
El-Sayed, A.M.; Khodairy, A.; Salah, H.; Abdel-Ghany, H. Synthesis of some new 1,5-benzodiazepines fused with different heterocyclic moieties. Phosphorous. Sulphur Silicon Relat. Elem, 2007, 182, 711-722.
[http://dx.doi.org/10.1080/10426500601087301]
[16]
Nagaraja, G.K.; Vaidya, V.P.; Rai, K.S.; Mahadevan, K.M. An efficient synthesis of 1,5-thiadiazepines and 1,5-benzodiazepines by microwave-assisted heterocyclisation. Phosphorous. Sulphur Silicon Relat. Elem., 2006, 181, 2797-2806.
[http://dx.doi.org/10.1080/10426500600864775]
[17]
Nabih, K.; Baouid, A.; Hasnaoui, A.; Kenz, A. Highly region and diasteroselective 1,3-dipolar cycloaddition of nitrile oxides to 2,4-dimethyl-3H-1,5-benzodiazepines: Synthesis of bis[1,2,4-oxadiazolo]-[1,5]benzodiazepine derivatives. Synth. Commun., 2006, 30, 1825-1836.
[18]
Reddy, K.V.V.; Rao, P.S.; Ashok, D. Facile synthesis of 2-benzoyl-6-hydroxy-3-methyl-5-(2-substituted-2,3-dihydro-1H-1,5-benzodiazepin-4-yl) benzo (b) furans. Synth. Commun., 2000, 30, 1825-1836.
[http://dx.doi.org/10.1080/00397910008087228]
[19]
(a)Sigel, E.; Buhr, A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci., 1997, 18(11), 425-429.
[http://dx.doi.org/10.1016/S0165-6147(97)01118-8] [PMID: 9426470]
(b)Skolnick, P.; Paul, S.M. The mechanism(s) of action of the benzodiazepines. Med. Res. Rev., 1981, 1(1), 3-22.
[http://dx.doi.org/10.1002/med.2610010103] [PMID: 6125632]
[20]
Lloyd, D.; Cleghorn, H.P. 1,5-Benzodiazepines. Adv. Heterocycl. Chem., 1974, 27-43.
[http://dx.doi.org/10.1016/S0065-2725(08)60906-X]
[21]
Verma, S.; Kumar, S. A mini review on synthetic approaches and biological activities of benzodiazepines. Mini Rev. Org. Chem., 2017, 14(6), 453-468.
[http://dx.doi.org/10.2174/1570193X14666170511121927]
[22]
Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44, 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
[23]
Singh, R.K.; Sharma, S.; Sandhar, A.; Saiani, M.; Kumar, S. Recent advances in the development of various catalysts for an efficient green synthesis of 1,5-benzodiazepines. Iranian J. Catal., 2016, 6(4), 389-408.
[24]
Yamamoto, H., Ed.; Lewis acids in organic synthesis; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527618309]
[25]
De, S.K.; Gibbs, R.A. Scandium (III) triflate as an efficient and reusable catalyst for synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2005, 46, 1811-1813.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.113]
[26]
Nagawade, R.R.; Shinde, D.B. Zirconyl (IV) chloride: A novel and efficient reagent for the rapid synthesis of 1,5-benzodiazepines under solvent-free conditions. Mendeleev Commun., 2006, 16(2), 113-115.
[http://dx.doi.org/10.1070/MC2006v016n02ABEH002171]
[27]
Chandra, R.; Kumar, R.; Choudhary, P.; Nimesh, S.; Verma, A.K. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by silver nitrate. Green Chem., 2006, 8, 519-521.
[http://dx.doi.org/10.1039/b601993e]
[28]
Shen, Q. Efficient synthesis of 1,5-benzodiazepine derivatives by ytterbium trichloride-catalyzed condensation of o-phenylenedia-mine and ketones. Synth. Commun., 2006, 36(4), 457-464.
[http://dx.doi.org/10.1080/00397910500383527]
[29]
Varala, R.; Enugala, R.; Adapa, S.R.; Nuvula, S. Ceric Ammonium Nitrate (CAN) promoted efficient synthesis of 1,5-benzodiazepine derivatives. Synlett, 2006, 7, 1009-1014.
[30]
Pandit, S.S.; Vikhe, B.D.; Shelke, G.D. LaCl3⋅H2O catalysed cyclocondensation of o-phenylenediamine and ketones under solvent-free conditions. J. Chem. Sci., 2007, 119(4), 295-297.
[http://dx.doi.org/10.1007/s12039-007-0039-z]
[31]
Reddy, K.S.; Reddy, C.V.; Mahesh, M.; Reddy, K.R.; Raju, P.V.K.; Reddy, V.V.N. Zirconium (IV) tetrachloride-catalyzed synthesis of 1,5-benzodiazepine derivatives. Can. J. Chem., 2007, 85, 184-188.
[http://dx.doi.org/10.1139/v07-019]
[32]
Prakash, G.K.S.; Vaghoo, H.; Venkat, A.; Panja, C.; Chacko, S.; Mathew, T.; Olah, G.A. Gallium (III) triflate-catalyzed synthesis of heterocycles: quinoxalines, 1,5-benzodiazepines and their fluorinated derivatives. Future Med. Chem., 2009, 1(5), 909-920.
[http://dx.doi.org/10.4155/fmc.09.77] [PMID: 21426089]
[33]
Mahajan, D.; Naqvi, T.; Sharma, R.L.; Kapoor, K.K. Alum-catalyzed one-pot solvent less synthesis of 1,5-benzodiazepines. Aust. J. Chem., 2008, 61(2), 159-162.
[http://dx.doi.org/10.1071/CH07316]
[34]
Kumar, S.; Sandhu, J.S. An efficient synthesis of 1,5-benzodiazepines catalysed by GaCl3 under solvent free conditions. Ind. J. Chem., 2008, 47(B), 1463-1466.
[35]
Pan, X.Q.; Zou, J.P.; Huang, Z.H.; Zhang, W. Ga(OTf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines. Tetrahedron Lett., 2008, 49(36), 5302-5308.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.082]
[36]
Pawar, S.S.; Shingare, M.S.; Thore, S.N. Novel, efficient and green procedure for the synthesis of 1,5-benzodiazepines catalyzed by MgBr2 in aqueous media. Chin. Chem. Lett., 2009, 20, 32-36.
[http://dx.doi.org/10.1016/j.cclet.2008.10.015]
[37]
Shi, R.X.; Liu, Y.K.; Xu, Z.Y. Sodium tetrachloroaurate(III) dihydrate-catalyzed efficient synthesis of 1,5-benzodiazepine and quinoxaline derivatives. J. Zhejiang Univ. Sci. B, 2010, 11(2), 102-108.
[http://dx.doi.org/10.1631/jzus.B0900288] [PMID: 20104644]
[38]
Gao, S.T.; Liu, W.H.; Ma, J.J.; Wang, C.; Liang, Q. NbCl5 as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives. Synth. Commun., 2009, 39(18), 3274-3278.
[http://dx.doi.org/10.1080/00397910902752238]
[39]
Vijayashankar, A.V.; Deepa, S.; Venugopal, B.R.; Nagaraju, N. Amorphous mesoporous iron aluminophosphate catalyst for the synthesis of 1,5-benzodiazepines. Chin. J. Catal., 2010, 31(11), 1321-1327.
[http://dx.doi.org/10.1016/S1872-2067(10)60120-9]
[40]
Chaskar, A.; Patil, L.; Phatangare, K.; Padalkar, V.; Takale, S. Bismuth (III) salts promoted and ionic liquid assisted an efficient and environmentally benign one-pot synthesis of 1,5-benzodiazepine derivative. ISRN Org. Chem., 2011, 2011604348
[http://dx.doi.org/10.5402/2011/604348] [PMID: 24052827]
[41]
Parveen, A.; Patil, V.A.; Baseer, M.A.; Ahmed, S.K. Mechanostic synthesis of 1,5-benzodiazepines using molecular iodine. Int. J. Ind. Chem., 2011, 2, 144-153.
[42]
Baseer, M.A.; Khan, A.J. ZOC-catalyzed an efficient synthesis of 1,5-benzodiazepines under mild conditions. Der Chemica Sinica, 2011, 2(2), 84-87.
[43]
Sharma, S.; Prasad, D.N.; Singh, R.K. One pot synthesis of 2,3-dihydro-1H-1,5-benzodiazepines under solvent-free conditions using anhydrous stannous chloride as catalyst. J. Chem. Pharm. Res., 2011, 3(5), 382-389.
[44]
Ilango, S.S.; Remya, P.V.; Ponnuswamy, S. synthesis and antimicrobial activity of novel 1,5-benzodiazepines. Indian J. Chem., 2013, 52B, 136-140.
[45]
Goswami, V.S.; Thorat, P.B.; Bhusare, S.R. Phenylboronic acid catalysed synthesis of o-phenylenediamine and ketone. J. Chem. Sci., 2013, 125(4), 745-749.
[http://dx.doi.org/10.1007/s12039-013-0441-7]
[46]
Yin, L.; Wang, L. Chemo-regio-selective synthesis of 2-aryl-3-acetyl-2,4-dihydro-1H-5H-1,5-benzodiazepines using Lewis acid, CeCl3·7H2O. Tetrahedron Lett., 2016, 57(52), 5935-5940.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.089]
[47]
Karimi-Jaberi, Z.; Hooshmandpour, A. One-pot synthesis of 4-substituted-1,5-benzodiazepines promoted by tris(hydrogensulfato) boron. Polycycl. Aromat. Compd., 2018, 1-5
[http://dx.doi.org/10.1080/10406638.2018.1441876]
[48]
Akiyama, T.; Mori, K. Stronger bronsted acids: Recent progress. Chem. Rev., 2015, 115(17), 9277-9306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00041] [PMID: 26182163]
[49]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373(1-2), 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008]
[50]
Vafaeezadeh, M.; Alinezhad, H. Bronsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq., 2016, 218, 95-105.
[http://dx.doi.org/10.1016/j.molliq.2016.02.017]
[51]
Thakuria, H.; Pramanik, A.; Borah, B.M.; Das, G.A. One-pot synthesis and self-assembled superstructure of organic salts of a 1,5-benzodiazepine derivative. Tetrahedron Lett., 2006, 47, 3135-3138.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.137]
[52]
Yuying, D.; Fuli, T.; Wenzhi, Z. [BPy]HSO4 acidic ionic liquid as a novel, efficient, and environmentally benign catalyst for synthesis of 1,5-Benzodiazepines under mild conditions. Synth. Commun., 2006, 36(12), 1661-1669.
[http://dx.doi.org/10.1080/00397910600616602]
[53]
Das, B.; Ramu, R.; Ravikanth, B.; Reddy, V.S. Bromodimethyl sulfonium bromide: An efficient catalyst for solvent-free synthesis of 1,5-benzodiazepines. J. Mol. Catal., 2006, 246(1-2), 76-78.
[http://dx.doi.org/10.1016/j.molcata.2005.10.015]
[54]
Pasha, M.A.; Jayashankara, V.P. An expeditious synthesis of 1,5-benzo- diazepine derivatives catalysed by p-toluenesulfonic acid. J. Pharmacol. Toxocol., 2006, 1(6), 573-578.
[http://dx.doi.org/10.3923/jpt.2006.573.578]
[55]
Guzen, K.P.; Cella, R.; Stefani, H.A. Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. Tetrahedron Lett., 2006, 47(46), 8133-8136.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.043]
[56]
Jung, D.I.; Song, J.H.; Kim, Y.H.; Lee, D.H.; Lee, Y.G.; Park, Y.M.; Choi, S.K.; Hahn, J.T. Synthesis of 1H-1,5-benzodiazepine derivatives and pyridinylquinoxalines with heterocyclic ketones. Bull. Korean Chem. Soc., 2007, 28(10), 1877-1880.
[http://dx.doi.org/10.5012/bkcs.2007.28.10.1877]
[57]
Zhenjiang, L.; Yingjie, S.; Xinghua, R.; Weisi, L.; Yuhu, S.; Pingkai, O. Efficient synthesis of 1,5-benzodiazepines mediated by sulfamic acid under neat condition or in solution. Synth. Commun., 2007, 37(10), 1609-1615.
[http://dx.doi.org/10.1080/00397910701263627]
[58]
Varala, R.; Enugala, R.; Adapa, S.R. P-nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives. J. Braz. Chem. Soc., 2007, 18(2), 291-296.
[http://dx.doi.org/10.1590/S0103-50532007000200008]
[59]
Sangshetti, J.N.; Kokare, N.D.; Shinde, D.B. Sulfanilic acid catalyzed solvent-free synthesis of 1,5-benzodiazepine derivatives. Chin. Chem. Lett., 2007, 18, 1305-1308.
[http://dx.doi.org/10.1016/j.cclet.2007.09.022]
[60]
Sharma, S.D.; Gogoi, P.; Konwar, D. A highly efficient and green method for the synthesis of 3,4-dihydropyrimidin-2-ones and 1,5-benzodiazepines catalyzed by dodecyl sulfonic acid in water. Green Chem., 2007, 9, 153-157.
[http://dx.doi.org/10.1039/B611327C]
[61]
Murai, K.; Nakatani, R.; Kita, Y.; Fujioka, H. One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron, 2008, 64, 11034-11040.
[http://dx.doi.org/10.1016/j.tet.2008.09.076]
[62]
Zhou, X.; Zhang, M.Y.; Gao, S.T.; Ma, J.J.; Wang, C.; Liu, C. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by boric acid. Chin. Chem. Lett., 2009, 20, 905-908.
[http://dx.doi.org/10.1016/j.cclet.2009.03.033]
[63]
Baseer, M.A.; Khan, A.J. Citric acid-catalyzed solvent free, an efficient one pot synthesis of 2,3-dihydro-1H-1,5-benzodiazepine derivatives. Recent Res. Sci. Technol., 2011, 3(3), 101-103.
[64]
Sandhar, A.; Prasad, D.N.; Kapoor, A.; Singh, R.K. Efficient p-amino benzoic acid catalyzed eco-friendly synthesis of 1,5-benzodiazepines among various amino acids under solvent free conditions. Current Res. Chem., 2012, 4(3), 68-75.
[http://dx.doi.org/10.3923/crc.2012.68.75]
[65]
Sandhar, A.; Prasad, D.N.; Singh, R.K. Salicylic acid catalyzed synthesis of 2, 3-dihydro-1H-1,5-benzodiazepines under solvent-free condition. Indian J. Heterocycl. Chem., 2012, 21, 369-374.
[66]
Zhao, Y.; Sharma, S.; Huang, M.; Sandhar, A.; Singh, R.K.; Ma, Y. Investigation of various organocatalyst for improved and efficient one pot synthesis of 2,3-dihydro-1H-1,5-benzodiazepines under solvent-free condition. Asian J. Chem., 2014, 26(16), 5116-5120.
[http://dx.doi.org/10.14233/ajchem.2014.16440]
[67]
Sajjadifar, S.; Rezayati, S. A simple and new method for the synthesis of 1,5 benzodiazepine derivatives catalyzed by boron sulfonic acid in solvent H2O/EtOH. Int. J. Chemtech Res., 2013, 5(4), 1964-1968.
[68]
Indalkar, K.S.; Patil, M.S.; Chaturbhuj, G.U. An efficient, environmentally benign, and solvent-free protocol for the synthesis of 4-substituted 1,5-benzodiazepines catalyzed by reusable sulfated polyborate. Tetrahedron Lett., 2017, 58, 4496-5502.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.030]
[69]
Alinezhad, H.; Tejbakhsh, M.; Norouzi, M.; Baghery, S. An efficient and green protocol for the synthesis of 1,5 benzodiazepine and quinoxaline derivatives using protic pyridinium ionic liquid as catalyst. World Appl. Sci. J., 2013, 22(12), 1711-1717.
[70]
Jadhav, A.H.; Chinnapan, A.; Patil, R.H.; Kostjuk, S.V.; Kim, H. Short oligo-ethylene glycolic tailor-made ionic liquids as highly efficient and reusable catalyst for one-pot synthesis of 1,5-benzodiazepine derivatives under solvent-free condition. Chem. Eng. J., 2014, 240, 228-234.
[http://dx.doi.org/10.1016/j.cej.2013.11.046]
[71]
Soled, S. CATALYSIS. Silica-supported catalysts get a new breath of life. Science, 2015, 350(6265), 1171-1172.
[http://dx.doi.org/10.1126/science.aad2204] [PMID: 26785461]
[72]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103(9), 3401-3429.
[http://dx.doi.org/10.1021/cr010440o] [PMID: 12964876]
[73]
Chari, M.A.; Syamasundar, K. Polymer (PVP) supported ferric chloride: An efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions and microwave irradiation. Catal. Commun., 2005, 6(1), 67-70.
[http://dx.doi.org/10.1016/j.catcom.2004.10.009]
[74]
Sucheta, K.; Rao, B.V. Microwave induced solvent-free synthesis of substituted 1,5-benzodiazepine derivatives, Ind. J. Chem, , 2005, 44(B), 2152-2154.
[75]
Tajbakhsh, M.; Heravi, M.M.; Mohajerani, B.; Ahmadi, A.N. Solid acid catalytic synthesis of 1,5-benzodiazepines: A highly improved protocol. J. Mol. Catal. Chem., 2006, 247, 213-215.
[http://dx.doi.org/10.1016/j.molcata.2005.11.033]
[76]
Bandgar, B.P.; Patil, A.V.; Chavan, O.S. Silica supported fluoroboric acid as a novel, efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines under solvent-free conditions. J. Mol. Catal. Chem., 2006, 256, 99-105.
[http://dx.doi.org/10.1016/j.molcata.2006.04.024]
[77]
Alibeik, M.A.; Baltork, I.M.; Yousefi, B.H. Novel synthesis of 1,5-benzodiazepines catalyzed by silica-supported dodecatungstophosphoric acid. In: 10th Electronic Conference on Synthetic Organic Chemistry Department of Chemistry Yazd University-Iran; , 2006; pp. 1-30.
[78]
Shaabani, A.; Maleki, A. A fast and efficient method for the synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions. Iran. J. Chem. Eng., 2007, 26(4), 93-97.
[79]
Fazaeli, R.; Aliyan, H. Clay (KSF and K10)-supported heteropoly acids: Friendly, efficient, reusable and heterogeneous catalysts for high yield synthesis of 1,5-benzodiazepine derivatives both in solution and under solvent-free conditions. Appl. Catal. A Gen., 2007, 331, 78-83.
[http://dx.doi.org/10.1016/j.apcata.2007.07.030]
[80]
Gholap, S.S.; Chaskar, S.C.; Gill, C.H. Synthesis of 1,5-benzodiazepines using silica perchloric acid: An effective reusable heterogeneous catalyst under mild condition. Rasayan J. Chem., 2008, 12, 331-336.
[81]
Tao, F.; Yi, W.B. A recyclable catalyst for the synthesis of 1,5-benzodiazepine derivatives: Polymer-supported ytterbium perfluoro octane sulfonate. [Yb(OPf)3] Lett. Org. Chem., 2008, 5, 655-658.
[http://dx.doi.org/10.2174/157017808786857552]
[82]
Ziarani, G.M.; Hassanzadeh, M.; Nahad, M.S.; Lashgari, N. Application of SiO2-Pr-SO3H in the efficient synthesis of benzodiazepine derivatives. Open Organic. Chem. J., 2014, 2(4), 49-57.
[83]
Shelke, K.F.; Badar, A.D.; Devhade, J.B. Ultrasound assisted an expeditious synthesis of 1,5-benzodiazepine catalyzed by cellulose sulphuric acid. Chem. Bio. Interface, 2018, 8(1), 22-25.
[84]
Ajayan, P.M.; Schadler, L.S.; Braun, P.V. Nanocomposite science and technology; Wiley, 2003.
[http://dx.doi.org/10.1002/3527602127]
[85]
Zhu, Y. Magnetic nanocomposites: A new perspective in catalysis. ChemCatChem, 2010, 2(4), 365-374.
[http://dx.doi.org/10.1002/cctc.200900314]
[86]
Marin, T.; Slavko, K.; Marko, J.; Darko, H.; Darko, M. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl. Surf. Sci., 2014, 322, 255-264.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.181]
[87]
Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55(50), 6931-6934.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.120]
[88]
Naeimi, H.; Foroughi, H. ZnS nanoparticles as an efficient recyclable heterogeneous catalyst for one-pot synthesis of 4-substituted-1,5-benzodiazepines. New J. Chem., 2015, 39(2), 1228-1236.
[http://dx.doi.org/10.1039/C4NJ01893A]
[89]
Singh, R.K.; Kumar, S.; Saini, M. Rapid and efficient synthesis of 1,5-benzodiazepines promoted by stannic oxide nano-particles under solvent-free conditions. Indian J. Chem., 2015, 25(2), 151-156.
[90]
Satyanarayana, K.V.V.; Murthy, Y.L.N.; Ramaiah, P.A.; Chandra, M.R.; Gil, Y.S.; Pammi, V.N. Green and reusable nanocatalyst for the synthesis of 1,5-benzodiazepines and its derivatives under solvent-free Conditions. Chem. Lett., 2015, 44(11), 1589-1591.
[http://dx.doi.org/10.1246/cl.150663]
[91]
Shoeb, M.; Mobin, M.; Ali, A.; Zaman, S.; Naqvi, H. Graphen-mesoporous anatase TiO2 nanocomposite: A highly efficient and recyclable heterogeneous catalyst for one-pot multicomponent synthesis of benzodiazepine derivatives. Appl. Organomet. Chem., 2017.
[92]
Sathe, B.P.; Phatak, P.S.; Dalve, V.S.; Rote, A.B.; Tigote, R.M.; Haval, K.P. Synthesis of 1,5-benzodiazepines by using Fe3O4@SiO2SO3H nanocatalyst. Int. Res. J. Sci. Eng., 2018, A5, 92-93.
[93]
Isaeva, V.I.; Timofeeva, M.N.; Panchenko, N.V.; Lukoyanov, A.I.; Chernyshev, V.V.; Kapustin, G.I.; Davshan, N.; Kustov, L.M. Design of novel catalysts for synthesis of 1,5-benzodiazepines from 1,2-phenylenediamine and ketones: NH2-MIL-101 (Al) as integrated structural scaffold for catalytic materials based on calyx[4]arenes. J. Catal., 2019, 369, 60-71.
[http://dx.doi.org/10.1016/j.jcat.2018.10.035]
[94]
Maleki, A.; Firouzi-Haji, R.; Farahani, P. Green multicomponent synthesis of benzodiazepines in the presence of CuFe2O4 as an efficient magnetically recyclable nanocatalyst under solvent-free ballmilling conditions at room temperature. Org. Chem. Res.,, 2018, 86-94.
[95]
Kuo, C.W.; More, S.V.; Yao, C.F. NBS as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives under mild conditions. Tetrahedron Lett., 2006, 47, 8523-8528.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.128]
[96]
Heravi, M.M.; Zadsirjan, V.; Behbahani, F.K.; Oskooie, H.A. Catalytic synthesis of 2,3-dihydro-1H-1,5-benzodiazepines by ferric perchlorate. J. Mol. Catal., 2006, 259(1-2), 201-204.
[http://dx.doi.org/10.1016/j.molcata.2006.06.013]
[97]
Fazeli, R.; Hamid, A. Aluminium dodecatungstophosphate promoted synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions. Heterocycles, 2007, 71(4), 805-814.
[http://dx.doi.org/10.3987/COM-06-10948]
[98]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A.; Hekmatshoar, R.; Bamoharram, F.F. An efficient synthesis of 3H-1,5-benzodiazepine derivatives catalyzed by heteropolyacids as a heterogeneous recyclable catalyst. J. Chin. Chem. Soc. (Taipei), 2008, 55, 842-845.
[http://dx.doi.org/10.1002/jccs.200800125]
[99]
Tao, Li. Fei-Qing Ding, Jian-Ping Zou, Xiao-Hua Lu, Montmorillonite K10: An efficient catalyst for solvent-free synthesis of 1,5-benzodiazepine derivatives. Synth. Commun., 2008, 38(8), 1259-1267.
[http://dx.doi.org/10.1080/00397910701873243]
[100]
Kuo, C.W.; Wang, C.C.; Kavala, V.; Yao, C.F. Efficient TCT-catalyzed synthesis of 1,5-benzodiazepine derivatives under mild conditions. Molecules, 2008, 13(9), 2313-2325.
[http://dx.doi.org/10.3390/molecules13092313] [PMID: 18830157]
[101]
Gopalakrishnapanicker, R.K.; Radhakrishnan, S.; Krishnapillai, S. Three component mannich reaction and 1,5-benzodiazepine synthesis catalyzed by a tetranitrile-silver complex. Lett. Org. Chem., 2009, 6, 17-21.
[http://dx.doi.org/10.2174/157017809787003188]
[102]
Konda, S.G.; Shaikh, B.M.; Chavan, S.A.; Dawane, B.S. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of novel 1,5-benzodiazepines and their antimicrobial activity. Chin. Chem. Lett., 2011, 22, 65-68.
[http://dx.doi.org/10.1016/j.cclet.2010.09.012]
[103]
Sandhar, A.; Singh, R.K. A simple, efficient and eco-friendly synthesis of 2, 3-dihydro-1H-1,5-benzodiazepines mediated by tannic acid under solvent-free condition. Asian J. Chem., 2012, 24(12), 5643-5645.
[104]
Majid, S.A.; Khanday, W.A.; Tomar, R. Synthesis of 1,5-benzodiazepine and its derivatives by condensation reaction using H-MCM-22 as catalyst. J. Biomed. Biotechnol., 2012, 2012510650
[http://dx.doi.org/10.1155/2012/510650] [PMID: 22570531]
[105]
Li, X.Q.; Wang, L.Z. Highly efficient one- pot, three-component synthesis of 1,5 benzodiazepine derivatives. Chin. Chem. Lett., 2014, 25, 327-332.
[http://dx.doi.org/10.1016/j.cclet.2013.11.035]
[106]
Le, D.T.; Nguyen, D.K.; Troung, T.; Phan, N.T.S. 1,5-Benzodiazepine synthesis via cyclo-condensation of 1,2-diamines with ketones using iron-based metal-organic framework MOF-235 as an efficient heterogeneous catalyst. J. Catal., 2016, 333, 94-101.
[http://dx.doi.org/10.1016/j.jcat.2015.10.026]
[107]
Sibous, S.; Ghilane, T.; Houde, S.; Ghailane, R.; Ghailane, T. Green and efficient method for the synthesis of 1,5-benzodiazepines using phosphate fertilizers as catalysts under free solvent. Mediterranean J. Chem., 2017, 6(2), 53-59.
[http://dx.doi.org/10.13171/mjc61/01701181035/souizi]
[108]
Chniti, S.; Nsira, A.; Khouaja, S.; Mechria, A.; Gharbi, R.; Msaddek, M.; Lecouvey, M. Highly diastereoselective synthesis of rigid 3-enamino-1,5-benzodiazepines. ARKIVOC, 2018, 283-295.
[http://dx.doi.org/10.24820/ark.5550190.p010.426]
[109]
Misra, A.; Sharma, S.; Sharma, D.; Dubey, S.; Mishra, A.; Kishore, D.; Dwivedi, J. Synthesis and molecular docking of pyrimidine incorporated novel analogue of 1,5-benzodiazepine as antibacterial agent. J. Chem. Sci., 2018, 130-131
[http://dx.doi.org/10.1007/s12039-018-1430-7]
[110]
Sun, Y.W.; Bei, Y.M.; Wang, L.Z. A catalyst-free four-component domino reaction for the synthesis of functionalized 3-acyl-1,5-benzodiazepines. Org. Biomol. Chem., 2019, 17(4), 930-938.
[http://dx.doi.org/10.1039/C8OB02903B] [PMID: 30629079]
[111]
Nguema Ongone, T.; Achour, R.; El Ghoul, M.; El Ouasif, L.; Taghzouti, K.; El Jemli, M.; Cherrah, Y.; Alaoui, K.; Zellou, A. Synthesis and pharmacological valorization of derivatives of 4-phenyl-1,5-benzodiazepin-2-one. Adv. Pharmacol. Sci., 2018, 20186042602
[http://dx.doi.org/10.1155/2018/6042602] [PMID: 29808085]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Published on: 31 May, 2020
Page: [465 - 484]
Pages: 20
DOI: 10.2174/1570193X16666190509074109
Price: $65

Article Metrics

PDF: 26
HTML: 1